
LECTURE NOTES

ON

DATA STRUCTURES THROUGH C

ACADEMIC YEAR 2021-22

I B.Tech.–II SEMESTER(R20)

V.Divya,Assistant Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

V S M COLLEGE OF ENGINEERING

RAMCHANDRAPURAM

E.G DISTRICT

533255

R-20 Syllabus for EEE - JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA – 533 003, Andhra Pradesh, India

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

I Year II Semester L T P C
3 0 0 3

DATA STRUCTURES THROUGH C

Preamble:
This course is core subject developed to help the student understand the data structure principles
used in power systems, machines and control systems. This subject covers linear data structures,
linked lists, trees, graphs, searching and sorting.

Course Objectives:

• Operations on linear data structures and their applications.
• The various operations on linked lists.
• The basic concepts of Trees, Traversal methods and operations.
• Concepts of implementing graphs and its relevant algorithms.
• Sorting and searching algorithms.

Unit-1: Linear Data Structures: Arrays, Stacks and Queues
Data Structures -Operations-Abstract Data Types-Complexity of Algorithms-Time and Space-
Arrays-Representation of Arrays-Linear Arrays-Insertion–Deletion and Traversal of a Linear
Array-Array as an Abstract Data Type-Multi-Dimensional Arrays-Strings-String Operations-
Storing Strings-String as an Abstract Data Type

Stack -Array Representation of Stack-Stack Abstract Data Type-Applications of Stacks: Prefix-
Infix and Postfix Arithmetic Expressions-Conversion-Evaluation of Postfix Expressions-
Recursion-Towers of Hanoi-Queues-Definition-Array Representation of Queue-The Queue
Abstract Data Type-Circular Queues-Dequeues-Priority Queues.

Unit-II: Linked Lists
Pointers-Pointer Arrays-Linked Lists-Node Representation-Single Linked List-Traversing and
Searching a Single Linked List-Insertion into and Deletion from a Single Linked List-Header
Linked Lists-Circularly Linked Lists-Doubly Linked Lists-Linked Stacks and Queues-
Polynomials-Polynomial Representation-Sparse Matrices.

Unit-III: Trees
Terminology-Representation of Trees-Binary Trees-Properties of Binary Trees-Binary Tree
Representations-Binary Tree Traversal-Preorder-In-order and Post-order Traversal-Threads-
Thread Binary Trees-Balanced Binary Trees-Heaps-Max Heap-Insertion into and Deletion from a
Max Heap-Binary Search Trees-Searching-Insertion and Deletion from a Binary Search Tree-
Height of Binary Search Tree, m-way Search Trees, B-Trees.

R-20 Syllabus for EEE - JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA – 533 003, Andhra Pradesh, India

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Unit-IV: Graphs
Graph Theory Terminology-Graph Representation-Graph Operations-Depth First Search-Breadth
First Search-Connected Components-Spanning Trees-Biconnected Components-Minimum Cost
Spanning Trees-Kruskal’s Algorithm-Prism’s Algorithm-Shortest Paths-Transitive Closure-All-
Pairs Shortest Path-Warshall’s Algorithm.

Unit-V: Searching and Sorting
Searching -Linear Search-Binary Search-Fibonacci Search-Hashing-Sorting-Definition-Bubble
Sort-Insertion sort-Selection Sort-Quick Sort-Merging-Merge Sort-Iterative and Recursive Merge
Sort-Shell Sort-Radix Sort-Heap Sort.

Course Outcomes:
After the completion of the course the student should be able to:

• data structures concepts with arrays, stacks, queues.
• linked lists for stacks, queues and for other applications.
• traversal methods in the Trees.
• various algorithms available for the graphs.
• sorting and searching in the data ret retrieval applications.

Text Books:

1. Fundamentals of Data Structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan
 Anderson Freed, Universities Press Pvt. Ltd.

2. Data Structures with C, Seymour Lipschutz, Schaum’s Outlines, Tata McGraw Hill.

VSM COLLEGE OF ENGINEERING
RAMACHANDRAPURAM

DEPARTMENT OF BASIC SCIENCES AND HUMANITIES

Course Title Year/Sem Branch Periods per Week

DATA STRUCTURES
THROUGH C

1/11 EEE
BRANCH

6

Unit

No

Outcomes

Name of the Topic

No. of

Periods

required

Total

Period

s

Referen

ce Book

Methodology

to be adopted

 Unit-1

I

CO 1 Data Structures -Operations-Abstract

Data Types
1

15

T1, T2

R20

Black Board

Complexity of Algorithms-Time and

Space
2 Black Board

Arrays-Representation of Arrays-

Linear Arrays-Insertion–Deletion
1 Black Board

d Traversal of a Linear Array-Array as
an Abstract Data

1 Black Board

Multi-Dimensional Arrays 1 Black Board

Strings-String Operations Storing

Strings-String as an Abstract Data

Type

1 Black Board

Stack -Array Representation of Stack-

Stack Abstract Data Type
2 Black Board

Applications of Stacks: Prefix Infix

and Postfix

 1

Arithmetic Expressions-Conversion-

Evaluation of Postfix Expressions
1 Black Board

Recursion-Towers of Hanoi 1 Black Board

Queues-Definition-Array

Representation of Queue-The Queue

Abstract Data Type

1 Black Board

Circular Queues- Dequeue -Priority

Queues.
2 Black Board

Course Outcomes:

 Operations on linear data structures and their applications

 The various operations on linked lists.

 The basic concepts of Trees, Traversal methods and operations.

 Concepts of implementing graphs and its relevant algorithms.

 Sorting and searching algorithms.

 Unit-2

II

CO2 Pointers-Pointer Arrays-Linked Lists-Node

Representation-Single Linked List-

Traversing and Searching a Single Linked

List

2

12

T1, T2

R20

Black
Board

-Insertion into and Deletion from a Single

Linked List-Header Linked Lists
2

Black
Board

Circularly Linked Lists 2
Black

Board

Doubly Linked Lists-Linked
2

Black

Board

Stacks and Queues 2
Black
Board

Polynomials-Polynomial Representation-

Sparse Matrices.
2

Black
Board

 Unit-3

III

CO3

Terminology-Representation of Trees-

Binary Trees-Properties of Binary Trees
2

12

T1, T2

R20

Black
Board

Binary Tree Representations-Binary Tree

Traversal-Preorder-In-order and Post-order
Traversal

2
Black

Board

Threads Thread Binary Trees-Balanced

Binary Trees
2

Black

Board

Heaps-Max Heap-Insertion into and

Deletion from a Max Heap
2

Black

Board

Binary Search Trees-Searching-Insertion

and Deletion from a Binary Search Tree

 2

Height of Binary Search Tree, m-way

Search Trees, B-Trees.
2

Black
Board

CO4

Unit-4

Graph Theory Terminology-Graph

Representation
2 Black Board

Graph Operations-Depth First Search-
Breadth First Search

2 Black Board

Connected Components-Spanning

Trees- Bi-connected Components
2 Black Board

Minimum Cost Spanning Trees-
Kruskal’s Algorithm

2 Black Board

 Prism’s

Algorithm-Shortest Paths

 2 Black Board
IV

Transitive Closure- AllPairs Shortest

Path -Warshall’s Algorithm.
2 Black Board

 12

V

 CO5

Unit-5

08

T1, T2

R20

Searching -Linear Search-

Binary Search Fibonacci Search
2 Black Board

Hashing Sorting-Definition-

Bubble Sort
2 Black Board

Insertion sort-Selection Sort

Quick Sort-Merging
2 E-Classroom

Merge Sort-Iterative and

Recursive Merge Sort Shell

Sort-Radix Sort-Heap Sort.

 2 Black Board

 Text Books:

1. Fundamentals of Data Structures in C, 2nd Edition, E.Horowitz, S.Sahni and

 Susan Anderson Freed, Universities Press Pvt. Ltd.

2. Data Structures with C, Seymour Lipschutz, Schaum’s Outlines, Tata McGraw Hill.

Course Outcomes:

 After the completion of the course the student should be able to:

 • Data structures concepts with arrays, stacks, queues.

 • Linked lists for stacks, queues and for other applications.

 • Traversal methods in the Trees.

 • Various algorithms available for the graphs.

 • Sorting and searching in the data ret retrieval applications.

Faculty Member Head of the Department Principal

Cm_gfgc magadi 1

MODULE 1: INTRODUCTION

DATA STRUCTURES

A data structure is a specialized format for organizing and storing data. General data
structure types include the array, the file, the record, the table, the tree, and so on. Any
data structure is designed to organize data to suit a specific purpose so that it can be
accessed and worked with in appropriate ways. In computer programming, a data
structure may be selected or designed to store data for the purpose of working on it
with various algorithms

Basic Terminology: Elementary Data Organization:

Data: Data are simply values or sets of values.

Information is organized or classified data, which has some meaningful values for the
receiver. Information is the processed data on which decisions and actions are based.

Data items: Data items refers to a single unit of values.

Data items that are divided into sub-items are called Group items. Ex: An Employee
Name may be divided into three subitems- first name, middle name, and last name.

Data items that are not able to divide into sub-items are called Elementary
items. Ex: SSN

Entity: An entity is something that has certain attributes or properties which may be
assigned values. The values may be either numeric or non-numeric.

Ex: Attributes- Names, Age, Sex, SSN

Values- Rohland Gail, 34, F, 134-34-5533

Entities with similar attributes form an entity set. Each attribute of an entity set has a
range of values, the set of all possible values that could be assigned to the particular
attribute.

https://whatis.techtarget.com/definition/format
https://searchdatamanagement.techtarget.com/definition/data
https://searchstorage.techtarget.com/definition/array
https://whatis.techtarget.com/definition/file
https://searchoracle.techtarget.com/definition/record
https://whatis.techtarget.com/definition/table
https://whatis.techtarget.com/definition/algorithm

Cm_gfgc magadi 2

The term “information” is sometimes used for data with given attributes, of, in other
words meaningful or processed data.

Field is a single elementary unit of information representing an attribute of an entity.

Record is the collection of field values of a given entity.

File is the collection of records of the entities in a given entity set.

Each record in a file may contain many field items but the value in a certain field may
uniquely determine the record in the file. Such a field K is called a primary key and the
values k1, k2, ….. in such a field are called keys or key values.

Records may also be classified according to length.

A file can have fixed-length records or variable-length records.

 In fixed-length records, all the records contain the same data items with the
same amount of space assigned to each data item.

 In variable-length records file records may contain different lengths.

Example: Student records have variable lengths, since different students take differe nt
numbers of courses. Variable-length records have a minimum and a maximum length.

The above organization of data into fields, records and files may not be complex enough
to maintain and efficiently process certain collections of data. For this reason, data are
also organized into more complex types of structures.
CLASSIFICATION OF DATA STRUCTURES
Data structures are generally classified into

 Primitive data Structures

 Non-primitive data Structures

1. Primitive data Structures: Primitive data structures are the fundamental data types

which are supported by a programming language. Basic data types such as integer,
real, character and Boolean are known as Primitive data Structures. These data types
consists of characters that cannot be divided and hence they also called simple data
types.

Cm_gfgc magadi 3

Non- Primitive data Structures: Non-primitive data structures are those data structures
which are created using primitive data structures. Examples of non-primitive data
structures is the processing of complex numbers, linked lists, stacks, trees, and graphs
Based on the structure and arrangement of data, non-primitive data structures is
further classified into

1. Linear Data Structure

2. Non-linear Data Structure

1. Linear Data Structure:

A data structure is said to be linear if its elements form a sequence or a linear list.
There are basically two ways of representing such linear structure in memory.

1. One way is to have the linear relationships between the elements represented
by means of sequential memory location. These linear structures are called
arrays.

2. The other way is to have the linear relationship between the elements

represented by means of pointers or links. These linear structures are called
linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2. Non-linear Data Structure:

A data structure is said to be non-linear if the data are not arranged in sequence or a
linear. The insertion and deletion of data is not possible in linear fashion. This structure
is mainly used to represent data containing a hierarchical relationship between
elements. Trees and graphs are the examples of non-linear data structure.

Cm_gfgc magadi 4

Arrays:

The simplest type of data structure is a linear (or one dimensional) array. A list of a finite
number n of similar data referenced respectively by a set of n consecutive numbers,
usually 1, 2, 3 n. if A is chosen the name for the array, then the elements of A
are denoted by subscript notation a1, a2, a3….. an

by the bracket notation A [1], A [2], A [3] A [n]
Trees

Data frequently contain a hierarchical relationship between various elements. The data
structure which reflects this relationship is called a rooted tree graph or a tree. Some of
the basic properties of tree are explained by means of examples
1. Stack: A stack, also called a fast-in first-out (LIFO) system, is a linear list in which
insertions and deletions can take place only at one end, called the top. This structure is
similar in its operation to a stack of dishes on a spring system as shown in fig.

Note that new 4 dishes are inserted only at the top of the stack and dishes can be
deleted only from the top of the Stack
Queue: A queue, also called a first-in first-out (FIFO) system, is a linear list in which
deletions can take place only at one end of the list, the "from'' of the list, and insertions
can take place only at the other end of the list, the “rear” of the list.

This structure operates in much the same way as a line of people waiting at a bus stop,
as pictured in Fig. the first person in line is the first person to board the bus. Another
analogy is with automobiles waiting to pass through an intersection the first car in line is
the first car through.
Graph: Data sometimes contain a relationship between pairs of elements which is not
necessarily hierarchical in nature. For example, suppose an airline flies only between
the cities connected by lines in Fig. The data structure which reflects this type of
relationship is called a graph.

DATA STRUCTURES OPERATIONS

The data appearing in data structures are processed by means of certain operations.

The following four operations play a major role in this text:

Cm_gfgc magadi 5

1. Traversing: accessing each record/node exactly once so that certain items in the
record may be processed. (This accessing and processing is sometimes called
“visiting” the record.)

2. Searching: Finding the location of the desired node with a given key value, or

finding the locations of all such nodes which satisfy one or more conditions.

3. Inserting: Adding a new node/record to the structure.

4. Deleting: Removing a node/record from the structure.

The following two operations, which are used in special situations:

1. Sorting: Arranging the records in some logical order (e.g., alphabetically
according to some NAME key, or in numerical order according to some NUMBER
key, such as social security number or account number)

Merging: Combining the records in two different sorted files into a single sorted file

Traversing in Linear Array

 Array is a container which can hold a fix number of items and these items should be of
the same type. Most of the data structures make use of arrays to implement their
algorithms.
Traverse − print all the array elements one by one.or process the each element one by
one . Let A be a collection of data elements stored in the memory of the computer.
Suppose we want to print the content of each element of A or suppose we want to
count the number of elements of A with given property. This can be accomplished by
traversing A, that is, by accessing and processing (frequently called visiting) each
element of An exactly once.

Algorithm

Step 1 : [Initialization] Set I = LB

Step 2 : Repeat Step 3 and Step 4 while I < = UB

step 3 : [processing] Process the A[I] element

Cm_gfgc magadi 6

Step 4 : [Increment the counter] I = I + 1
 [End of the loop of step 2]

Inserting

 Let A be a collection of data elements stored in the memory of the
computer. Inserting refers to the operation of adding another element
to the collection A.

 Inserting an element at the “end” of the linear array can be easily done provided

the memory space allocated for the array is large enough to accommodate the
additional element.

 Inserting an element in the middle of the array, then on average, half of the

elements must be moved downwards to new locations to accommodate the new
element and keep the order of the other elements.

Algorithm:

INSERT (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K ≤ N.
This algorithm inserts an element ITEM into the Kt h position in LA.

1. [Initialize counter] set J:= N

2. Repeat step 3 and 4 while J ≥ K

3. [Move Jt h element downward] Set LA [J+1] := LA[J]
4. [Decrease counter] set J:= J – 1

 [End of step 2 loop]

5. [Insert element] set LA[K]:= ITEM

6. [Reset N] set N:= N+1

7. Exit

Searching
search is a very simple search algorithm. In this type of search, a sequential search is
made over all items one by one. Every item is checked and if a match is found then that
particular item is returned, otherwise the search continues till the end of the data
collection.

Cm_gfgc magadi 7

Algorithm

Linear Search (Array A, Value x)

Step 1: Set i to 1
Step 2: if i > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Set i to i + 1
Step 5: Go to Step 2
Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found
Step 8: Exit

Deleting

 Deleting refers to the operation of removing one element to the collection A.

 Deleting an element at the “end” of the linear array can be easily done with
difficulties.

 If element at the middle of the array needs to be deleted, then each

subsequent elements be moved one location upward to fill up the array.

Algorithm

DELETE (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K ≤ N.
this algorithm deletes the Kt h element from LA

1. Set ITEM:= LA[K]

2. Repeat for J = K to N – 1

 [Move J + 1 element upward] set LA[J]:= LA[J+1]

 [End of loop]

3. [Reset the number N of elements in LA] set N:= N – 1

4. Exit

 Sorting

Cm_gfgc magadi 8

Sorting refers to the operation of rearranging the elements of a list. Here list be a
set of n elements. The elements are arranged in increasing or decreasing order.

Ex: suppose A is the list of n numbers. Sorting A refers to the operation of
rearranging the elements of A so they are in increasing order, i.e., so that,

A[I] < A[2] < A[3] < ... < A[N]

For example, suppose A originally is the list

8, 4, 19, 2, 7, 13, 5, 16

After sorting, A is the list

2, 4, 5, 7, 8, 13, 16, 19
Bubble Sort

Suppose the list of numbers A[l], A[2], ... , A[N] is in memory. The bubble sort
algorithm works as follows:

Algorithm: Bubble Sort – BUBBLE (DATA, N)

Here DATA is an array with N elements. This algorithm sorts the elements in

DATA.

1. Repeat Steps 2 and 3 for K = 1 to N - 1.

2. Set PTR: = 1. [Initializes pass pointer PTR.]

3. Repeat while PTR ≤ N - K: [Executes pass.]

(a) If DATA[PTR] > DATA[PTR + 1], then:

Interchange DATA [PTR] and DATA [PTR + 1].

[End of If structure.]

(b) Set PTR: = PTR + 1.

Cm_gfgc magadi 9

[End of inner loop.]

[End of Step 1 outer loop.]

4. Exit.

Merge two arrays

1. Create an array arr3[] of size n1 + n2.
2. Simultaneously traverse arr1[] and arr2[].

• Pick smaller of current elements in arr1[] and arr2[], copy this smaller element
to next position in arr3[] and move ahead in arr3[] and the array whose
element is picked.

3. If there are are remaining elements in arr1[] or arr2[], copy them also in arr3[].

Abstract Data Types
Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined
by a set of value and a set of operations.The definition of ADT only mentions what
operations are to be performed but not how these operations will be implemented.
It does not specify how data will be organized in memory and what algorithms will
be used for implementing the operations. It is called “abstract” because it gives an
implementation independent view. The process of providing only the essentials and
hiding the details is known as abstraction.
The user of data type need not know that data type is implemented, for example,
we have been using int, float, char data types only with the knowledge with values
that can take and operations that can be performed on them without any idea of
how these types are implemented. So a user only needs to know what a data type
can do but not how it will do it. We can think of ADT as a black box which hides the
inner structure and design of the data type. Now we’ll define three ADTs
namely List ADT, StackADT, Queue ADT.

List ADT
A list contains elements of same type arranged in sequential order and following
operations can be performed on the list.
get() – Return an element from the list at any given position.
insert() – Insert an element at any position of the list.
remove() – Remove the first occurrence of any element from a non-empty list.
removeAt() – Remove the element at a specified location from a non-empty list.
replace() – Replace an element at any position by another element.
size() – Return the number of elements in the list.

https://www.geeksforgeeks.org/data-types-in-c/
https://www.geeksforgeeks.org/linked-list-set-1-introduction/
https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

Cm_gfgc magadi 10

isEmpty() – Return true if the list is empty, otherwise return false.
isFull() – Return true if the list is full, otherwise return false.

Stack ADT
A Stack contains elements of same type arranged in sequential order. All operations
takes place at a single end that is top of the stack and following operations can be
performed:
push() – Insert an element at one end of the stack called top.
pop() – Remove and return the element at the top of the stack, if it is not empty.
peek() – Return the element at the top of the stack without removing it, if the stack
is not empty.
size() – Return the number of elements in the stack.
isEmpty() – Return true if the stack is empty, otherwise return false.
isFull() – Return true if the stack is full, otherwise return false

Algorithm INTRODUCTION

What is an Algorithm?

Informal Definition:

An Algorithm is any well-defined computational procedure that takes some value
or set of values as input and produces a set of values or some value as output. Thus
algorithm is a sequence of computational steps that transforms the input into the
output.

Formal Definition:

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for
obtaining a required output for any legitimate input in a finite amount of time.
Properties of an algorithm

INPUT Zero or more quantities are externally supplied.
OUTPUT At least one quantity is produced.
DEFINITENESS each instruction is clear and unambiguous.
FINITENESS if we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps.
EFFECTIVENESS every instruction must very basic so that it can be carried out, in
principle, by a person using only pencil & paper.

Cm_gfgc magadi 11

Performance of a program: time and space tradeoff

The performance of a program is the amount of computer memory and time needed to
run a program. We use two approaches to determine the performance of a program.
One is analytical, and the other experimental. In performance analysis we use analytical
methods, while in performance measurement we conduct experiments.

Time Complexity:
The time needed by an algorithm expressed as a function of the size of a problem is
called the time complexity of the algorithm. The time complexity of a program is the
amount of computer time it needs to run to completion.
The limiting behavior of the complexity as size increases is called the asymptotic time
complexity. It is the asymptotic complexity of an algorithm, which ultimately
determines the size of problems that can be solved by the algorithm.

Space Complexity:
The space complexity of a program is the amount of memory it needs to run to
completion. The space need by a program has the following components:
Instruction space: Instruction space is the space needed to store the compiled version
of the program instructions.
Data space: Data space is the space needed to store all constant and variable values.
Data space has two components:

• Space needed by constants and simple variables in program.

• Space needed by dynamically allocated objects such as arrays and class instances.
Environment stack space: The environment stack is used to save information needed to
resume execution of partially completed functions.
Instruction Space: The amount of instructions space that is needed depends on
factors such as:

• The compiler used to complete the program into machine code.

• The compiler options in effect at the time of compilation

• the target computer.

Algorithm Design Goals
The three basic design goals that one should strive for in a program are:
1. Try to save Time
2. Try to save Space
3. Try to save Face

a program that runs faster is a better program, so saving time is an obvious
goal. Likewise, a program that saves space over a competing program is considered

Cm_gfgc magadi 12

desirable. We want to “save face” by preventing the program from locking up or
generating reams of garbled data.

Algorithm Specification
Algorithm can be described in three ways.

1. Natural language like English: When this way is choosed care should be taken, we
should ensure that each & every statement is definite.

2. Graphic representation called flowchart: This method will work well when the
algorithm is small& simple.

3. Pseudo-code Method: In this method, we should typically describe algorithms as
program, which resembles programming language constructs

Pseudo-Code Conventions:

1. Comments begin with // and continue until the end of line.

2. Bocks are indicated with matching braces {and}.

3.
An identifier begins with a letter. The data types of variables are not explicitly
declared.

4. Compound data types can be formed with records. Here is an example,

Node. Record { data type – 1 data-1; . .
.

data type – n data – n; node * link;
}

Here link is a pointer to the record type node. Individual data items of a record can be
accessed with → and period.
5. Assignment of values to variables is done using the assignment statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

 Logical Operators AND, OR, NOT

Relational Operators <, <=,>,>=, =, !=
7. The following looping statements are employed. For, while and repeat-until

While Loop:

Cm_gfgc magadi 13

While < condition > do

{ <statement-1> . . . <statement-n> }

For Loop:

For variable: = value-1 to value-2 step step do

{ <statement-1> . . . <statement-n> }

repeat-until:

repeat <statement-1> . . . <statement-n> until<condition>

8. A conditional statement has the following forms.

 If <condition> then <statement>

 If <condition> then <statement-1> Else <statement-1>

 Case
statement:
Case

{ : <condition-1> : <statement-1>

. . .

: <condition-n> : <statement-n>

: else : <statement-n+1>

}

Input and output are done using the instructions read & write.
Orders Of Growth

♦A difference in running times on small inputs is not what really distinguishes efficient
algorithms from inefficient ones.

Cm_gfgc magadi 14

♦When we have to compute, for example, the greatest common divisor of two small
numbers, it is not immediately clear how much more efficient Euclid‘s algorithm is
compared to the other two algorithms discussed in previous section or even why we
should care which of them is faster and by how much. It is only when we have to find
the greatest common divisor of two large numbers that the difference in algorithm
efficiencies becomes both clear and important.

For large values of n, it is the function‘s order of growth that counts:

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time
and/or storage space requirement of the algorithm in terms of the size ‘n’ of the input
data. Mostly, the storage space required by an algorithm is simply a multiple of the
data size ‘n’. Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size
‘n’ of the input data but also on the particular data. The complexity function f(n) for
certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as
analysis of algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested
in the rate of growth of the time or space required to solve larger and larger instances
of a problem. We will associate with the problem an integer, called the size of the
problem, which is a measure of the quantity of input data.
Asymptotic notations
The following notations are commonly use notations in performance analysis and used
to characterize the complexity of an algorithm:

1. Big–OH (O)

Cm_gfgc magadi 15

2. Big–OMEGA (Ω),
3. Big–THETA (θ) and

Big–OH O (Upper Bound)
f(n) <O(g(n)), (pronounced order of or big oh), says that the growth rate of f(n) is less
than or equal (<) that of g(n).

Big–OMEGA (Lower Bound)
f(n) > (g(n)) (pronounced omega), says that the growth rate of f(n) is greater than or
equal to (>) that of g(n).

Big–THETA (Same order)
g1(n) <f(n) <g2(n) (pronounced theta), says that the growth rate of f(n) equals
(=) the growth rate of g(n) [if f(n) = O(g(n)) and T(n) = (g(n)].

STRING

BASIC TERMINOLOGY:

Cm_gfgc magadi 16

Each programming languages contains a character set that is used to communicate
with the computer. The character set include the following:

Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digits: 0 1 2 3 4 5 6 7 8 9

Special characters: + - / * () , . $ = ‘ _ (Blank space)

String: A finite sequence S of zero or more Characters is called string.

Length: The number of characters in a string is called length of string.

Empty or Null String: The string with zero characters.

Concatenation: Let S1 and S2 be the strings. The string consisting of the characters
of S1 followed by the character S2 is called Concatenation of S1 and S2. Ex: ‘THE’ //
‘END’ = ‘THEEND’

‘THE’ // ‘ ’ // ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such
that S = X // Y // Z

If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string
then Y is called a terminal substring of S.

Ex: ‘BE OR NOT’ is a substring of ‘TO BE OR NOT TO BE’

‘THE’ is an initial substring of ‘THE END’

STRINGS IN C

In C, the strings are represented as character arrays terminated with the null character
\0.

Declaration 1:

#define MAX_SIZE 100 /* maximum size of string */

char s[MAX_SIZE] = {“dog”};

char t[MAX_SIZE] = {“house”};

Cm_gfgc magadi 17

s[0] s[1] s[2] s[3] t[0] t[1] t[2] t[3] t[4] t[4]

d o g \0 h o u s e \0

The above figure shows how these strings would be represented internally in memory
Declaration 2:

char s[] = {“dog”};

char t[] = {“house”};

Using these declarations, the C compiler will allocate just enough space to hold each
word including the null character.

STORING STRINGS

Strings are stored in three types of structures

1. Fixed length structures

2. Variable length structures with fixed maximum

3. Linked structures

Record Oriented Fixed length storage:

In fixed length structures each line of print is viewed as a record, where all have the
same length i.e., where each record accommodates the same number of
characters.

Example: Suppose the input consists of the program. Using a record oriented, fixed
length storage medium, the input data will appear in memory as pictured below.

Cm_gfgc magadi 18

The main advantages of this method are

1. The ease of accessing data from any given record

2. The ease of updating data in any given record (as long as the length of the
new data does not exceed the record length)

The main disadvantages are

1. Time is wasted reading an entire record if most of the storage consists of
inessential blank spaces.

2. Certain records may require more space than available

3. When the correction consists of more or fewer characters than the

original text, changing a misspelled word requires record to be changed.

Variable length structures with fixed maximum

The storage of variable-length strings in memory cells with fixed lengths can be done
in two general ways

1. One can use a marker, such as two dollar signs ($$), to signal the end of the string

2. One can list the length of the string—as an additional item in the pointer array
Linked Storage

 Most extensive word processing applications, strings are stored by means of
linked lists.

 In a one way linked list, a linearly ordered sequence of memory cells called

nodes, where each node contains an item called a link, which points to the
next node in the list, i.e., which consists the address of the next node.

STRING OPERATION

Substring

Accessing a substring from a given string requires three pieces of information:

(1) The name of the string or the string itself

Cm_gfgc magadi 19

(2) The position of the first character of the substring in the given string

(3) The length of the substring or the position of the last character of the substring.

Syntax: SUBSTRING (string, initial, length)

The syntax denote the substring of a string S beginning in a position K and having a
length L.

Ex: SUBSTRING ('TO BE OR NOT TO BE’, 4, 7) = 'BE OR N’

SUBSTRING ('THE END', 4, 4) = ' END'

Indexing

Indexing also called pattern matching, refers to finding the position where a string
pattern P first appears in a given string text T. This operation is called INDEX

Syntax: INDEX (text, pattern)

If the pattern P does not appears in the text T, then INDEX is assigned the value 0.

The arguments “text” and “pattern” can be either string constant or string variable.

Concatenation

Let S1 and S2 be string. The concatenation of S1 and S2 which is denoted by S1 // S2, is
the string consisting of the characters of S1 followed by the character of S2. Ex:

(a) Suppose S1 = 'MARK' and S2= ‘TWAIN' then

S1 // S2 = ‘MARKTWAIN’

Concatenation is performed in C language using strcat function as shown

below strcat (S1, S2);

Concatenates string S1 and S2 and stores the result in S1

Cm_gfgc magadi 20

strcat () function is part of the string.h header file; hence it must be included at the
time of pre- processing
C Program to Concat Two Strings without Using Library Function

#include<stdio.h>
#include<string.h>
void concat(char[], char[]);
int main() {
 char s1[50], s2[30];
 printf("\nEnter String 1 :");
 gets(s1);
 printf("\nEnter String 2 :");
 gets(s2);
 concat(s1, s2);
 printf("\nConcated string is :%s", s1);
 return (0);
}
void concat(char s1[], char s2[]) {
 int i, j;
 i = strlen(s1);
 for (j = 0; s2[j] != '\0'; i++, j++) {
 s1[i] = s2[j];
 }
 s1[i] = '\0';

}
Enter String 1 : Ankit
Enter String 2 : Singh
Concated string is : AnkitSingh

Length

The number of characters in a string is called its length.

Syntax: LENGTH (string)

Ex: LENGTH (‘computer’) = 8

String length is determined in C language using the strlen() function, as shown below:

X = strlen ("sunrise");

Cm_gfgc magadi 21

strlen function returns an integer value 7 and assigns it to the variable X

Similar to strcat, strlen is also a part of string.h, hence the header file must be included
at the time of pre-processing.

C program to find the length of a string without using the
 * built-in function
 */
#include <stdio.h>

void main()
{
 char string[50];
 int i, length = 0;

 printf("Enter a string \n");
 gets(string);
 /* keep going through each character of the string till its end */
 for (i = 0; string[i] != '\0'; i++)
 {
 length++;
 }
 printf("The length of a string is the number of characters in it \n");
 printf("So, the length of %s = %d\n", string, length);
}

Enter a string
hello
The length of a string is the number of characters in it
So, the length of hello = 5

C strcmp()

The strcmp() function compares two strings and returns 0 if both strings

are identical.

Cm_gfgc magadi 22

C strcmp() Prototype

int strcmp (const char* str1, const char* str2);

The strcmp() function takes two strings and return an integer.

The strcmp() compares two strings character by character. If the first character of two
strings are equal, next character of two strings are compared. This continues until the
corresponding characters of two strings are different or a null character '\0' is reached.

It is defined in string.h header file.

Return Value from strcmp()

Return Value Remarks

0 if both strings are identical (equal)

Negative if the ASCII value of first unmatched character is less than second.

positive integer if the ASCII value of first unmatched character is greater than second.

C program to compare two strings without using string functions

#include<stdio.h>

int stringCompare(char[],char[]);
int main(){

Cm_gfgc magadi 23

 char str1[100],str2[100];
 int compare;

 printf("Enter first string: ");
 scanf("%s",str1);

 printf("Enter second string: ");
 scanf("%s",str2);

 compare = stringCompare(str1,str2);

 if(compare == 1)
 printf("Both strings are equal.");
 else
 printf("Both strings are not equal");

 return 0;
}

int stringCompare(char str1[],char str2[]){
 int i=0,flag=0;

 while(str1[i]!='\0' && str2[i]!='\0'){
 if(str1[i]!=str2[i]){
 flag=1;
 break;
 }
 i++;
 }

 if (flag==0 && str1[i]=='\0' && str2[i]=='\0')
 return 1;
 else
 return 0;

}

Sample output:
Enter first string: HELLO

Cm_gfgc magadi 24

Enter second string: HELLO
Both strings are equal.

C strcpy()

The strcpy() function copies the string to the another character array.

strcpy() Function prototype

char* strcpy(char* destination, const char* source);

The strcpy() function copies the string pointed by source (including the null

character) to the character array destination.

This function returns character array destination.

The strcpy() function is defined in string.h header file.

String copy without using strcpy in c programming language

#include<stdio.h>

void stringCopy(char[],char[]);

int main(){

 char str1[100],str2[100];

 printf("Enter any string: ");
 scanf("%s",str1);

 stringCopy(str1,str2);

 printf("After copying: %s",str2);

 return 0;

Cm_gfgc magadi 25

}

void stringCopy(char str1[],char str2[]){
 int i=0;

 while(str1[i]!='\0'){
 str2[i] = str1[i];
 i++;
 }

 str2[i]='\0';
}

Sample output:
Enter any string:HELLO
After copying: HELLO

PATTERN MATCHING ALGORITHMS

Pattern matching is the problem of deciding whether or not a given string pattern P
appears in a string text T. The length of P does not exceed the length of T.

First Pattern Matching Algorithm

 The first pattern matching algorithm is one in which comparison is done by a
given pattern P with each of the substrings of T, moving from left to right, until a
match is

found.

WK = SUBSTRING (T, K, LENGTH (P))

 Where, WK denote the substring of T having the same length as P and beginning
with the Kt h character of T.

 First compare P, character by character, with the first substring, W1. If all the
characters are the same, then P = W1 and so P appears in T and INDEX (T, P) = 1.

 Suppose it is found that some character of P is not the same as the

corresponding character of W1. Then P ≠ W1

Cm_gfgc magadi 26

 Immediately move on to the next substring, W2 That is, compare P with W2. If P

≠ W2 then compare P with W3 and so on.

 The process stops, When P is matched with some substring WK and so P appears
in T and INDEX(T,P) = K or When all the WK'S with no match and hence P does not
appear in T.

 The maximum value MAX of the subscript K is equal to LENGTH(T) -LENGTH(P) +1.

Algorithm: (Pattern Matching)

P and T are strings with lengths R and S, and are stored as arrays with one
character per element. This algorithm finds the INDEX of P in T.

1. [Initialize.] Set K: = 1 and MAX: = S - R + 1

2. Repeat Steps 3 to 5 while K ≤ MAX

3. Repeat for L = 1 to R: [Tests each character
of P] If P[L] ≠ T[K + L – l], then: Go to
Step 5

[End of inner loop.]

4. [Success.] Set INDEX = K, and Exit

5. Set K := K + 1

[End of Step 2 outer loop]

6. [Failure.] Set INDEX = O

7. Exit

PATTERN MATCHING PROGRAM

#include <stdio.h>
#include <string.h>

int match(char [], char []);

Cm_gfgc magadi 27

int main() {
 char a[100], b[100];
 int position;

 printf("Enter some text\n");
 gets(a);

 printf("Enter a string to find\n");
 gets(b);

 position = match(a, b);

 if (position != -1) {
 printf("Found at location: %d\n", position + 1);
 }
 else {
 printf("Not found.\n");
 }

 return 0;
}

int match(char text[], char pattern[]) {
 int c, d, e, text_length, pattern_length, position = -1;

 text_length = strlen(text);
 pattern_length = strlen(pattern);

 if (pattern_length > text_length) {
 return -1;
 }

 for (c = 0; c <= text_length - pattern_length; c++) {
 position = e = c;

 for (d = 0; d < pattern_length; d++) {
 if (pattern[d] == text[e]) {
 e++;
 }

Cm_gfgc magadi 28

 else {
 break;
 }
 }
 if (d == pattern_length) {
 return position;
 }
 }

 return -1;
}
OUTPUT

 STACKS AND QUEUES

Stack:

In the pushdown stacks only two operations are allowed: push the item into the stack, and pop the item out of the
stack. A stack is a limited access data structure - elements can be added and removed from the stack only at the top.
push adds an item to the top of the stack, pop removes the item from the top. A helpful analogy is to think of a stack
of books; you can remove only the top book, also you can add a new book on the top.

Queue:

An excellent example of a queue is a line of students in the food court of the UC. New additions to a line made to the

back of the queue, while removal (or serving) happens in the front. In the queue only two operations are allowed

enqueue and dequeue. Enqueue means to insert an item into the back of the queue, dequeue means removing the

front item. The picture demonstrates the FIFO access. The difference between stacks and queues is in removing. In a

stack we remove the item the most recently added; in a queue, we remove the item the least recently added.

Difference between Stack and Queue Data Structures

Stack:- A stack is a linear data structure in which elements can be inserted and deleted only from one
side of the list, called the top. A stack follows the LIFO (Last In First Out) principle, i.e., the element
inserted at the last is the first element to come out. The insertion of an element into stack is
called push operation, and deletion of an element from the stack is called pop operation. In stack we
always keep track of the last element present in the list with a pointer called top.
The diagrammatic representation of stack is given below:

https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://everythingcomputerscience.com/images/stackImg.jpg
https://everythingcomputerscience.com/discrete_mathematics/queueImg.jpg

Queue:- A queue is a linear data structure in which elements can be inserted only from one side of the
list called rear, and the elements can be deleted only from the other side called the front. The queue data
structure follows the FIFO (First In First Out) principle, i.e. the element inserted at first in the list, is the
first element to be removed from the list. The insertion of an element in a queue is called
an enqueue operation and the deletion of an element is called a dequeue operation. In queue we always
maintain two pointers, one pointing to the element which was inserted at the first and still present in the
list with the front pointer and the second pointer pointing to the element inserted at the last with
the rear pointer.
The diagrammatic representation of queue is given below:

https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

Difference between Stack and Queue Data Structures

STACKS QUEUES

Stacks are based on the LIFO principle, i.e.,

the element inserted at the last, is the first

element to come out of the list.

Queues are based on the FIFO principle, i.e., the element

inserted at the first, is the first element to come out of the list.

Insertion and deletion in stacks takes place

only from one end of the list called the top.

Insertion and deletion in queues takes place from the opposite

ends of the list. The insertion takes place at the rear of the list

and the deletion takes place from the front of the list.

Insert operation is called push operation. Insert operation is called enqueue operation.

Delete operation is called pop operation. Delete operation is called dequeue operation.

STACKS QUEUES

In stacks we maintain only one pointer to

access the list, called the top, which always

points to the last element present in the

list.

In queues we maintain two pointers to access the list. The front

pointer always points to the first element inserted in the list and

is still present, and the rear pointer always points to the last

inserted element.

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the operations regarding the stack are

performed using arrays. Lets see how each operation can be implemented on the stack using array data

structure.

Adding an element onto the stack (push operation)

Adding an element into the top of the stack is referred to as push operation. Push operation involves following

two steps.

1. Increment the variable Top so that it can now refere to the next memory location.

2. Add element at the position of incremented top. This is referred to as adding new element at the top of

the stack.

Stack is overflown when we try to insert an element into a completely filled stack therefore, our main function

must always avoid stack overflow condition.

Algorithm:

1. begin

2. if top = n then stack full

3. top = top + 1

4. stack (top) : = item;

5. end

Time Complexity : o(1)

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The value of the variable top will be
incremented by 1 whenever an item is deleted from the stack. The top most element of the stack is stored in an

another variable and then the top is decremented by 1. the operation returns the deleted value that was stored in

another variable as the result.

The underflow condition occurs when we try to delete an element from an already empty stack.

Algorithm :

1. begin

2. if top = 0 then stack empty;

3. item := stack(top);

4. top = top - 1;

5. end;

Time Complexity : o(1)

Visiting each element of the stack (Peek operation)

Peek operation involves returning the element which is present at the top of the stack without deleting it.

Underflow condition can occur if we try to return the top element in an already empty stack.

Algorithm :

PEEK (STACK, TOP)

1. Begin

2. if top = -1 then stack empty

3. item = stack[top]

4. return item

5. End

Time complexity: o(n)

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list allocates the memory

dynamically. However, time complexity in both the scenario is same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in the memory. Each node

contains a pointer to its immediate successor node in the stack. Stack is said to be overflown if the space left in the

memory heap is not enough to create a node.

The top most node in the stack always contains null in its address field. Lets discuss the way in which, each

operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list

implementation is different from that of an array implementation. In order to push an element onto the stack, the

following steps are involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This includes assigning value

to the data part of the node and assign null to the address part of the node.

3. If there are some nodes in the list already, then we have to add the new element in the beginning of the

list (to not violate the property of the stack). For this purpose, assign the address of the starting element

to the address field of the new node and make the new node, the starting node of the list.

Time Complexity : o(1)

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the linked

list implementation of stack is different from that in the array implementation. In order to pop an element

from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try

to pop from an already empty stack. The stack will be empty if the head pointer of the list points

to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only

from one end, therefore, the value stored in the head pointer must be deleted and the node must

be freed. The next node of the head node now becomes the head node.

Time Complexity : o(n)

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the form of

stack. For this purpose, we need to follow the following steps.

1. Copy the head pointer into a temporary pointer.

2. Move the temporary pointer through all the nodes of the list and print the value field attached to

every node.

Time Complexity : o(n)

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e. front and rear, that are

implemented in the case of every queue. Front and rear variables point to the position from where insertions and
deletions are performed in a queue. Initially, the value of front and queue is -1 which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective values of front and rear, is shown

in the following figure.

The above figure shows the queue of characters forming the English word "HELLO". Since, No deletion is

performed in the queue till now, therefore the value of front remains -1 . However, the value of rear increases by

one every time an insertion is performed in the queue. After inserting an element into the queue shown in the

above figure, the queue will look something like following. The value of rear will become 5 while the value of front

remains same.

After deleting an element, the value of front will increase from -1 to 0. however, the queue will look something like

following.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front and rear to 0 and

insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear as the index.

Algorithm

o Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

o Step 4: EXIT

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end of the queue at each time.

Algorithm

o Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

o Step 2: EXIT

Drawback of array implementation

Although, the technique of creating a queue is easy, but there are some drawbacks of using this technique to

implement a queue.

o Memory wastage : The space of the array, which is used to store queue elements, can never be

reused to store the elements of that queue because the elements can only be inserted at front end and

the value of front might be so high so that, all the space before that, can never be filled.

o

The above figure shows how the memory space is wasted in the array representation of queue. In the above figure,
a queue of size 10 having 3 elements, is shown. The value of the front variable is 5, therefore, we can not reinsert

the values in the place of already deleted element before the position of front. That much space of the array is
wasted and can not be used in the future (for this queue).

o Deciding the array size

On of the most common problem with array implementation is the size of the array which requires to be declared in

advance. Due to the fact that, the queue can be extended at runtime depending upon the problem, the extension
in the array size is a time taking process and almost impossible to be performed at runtime since a lot of

reallocations take place. Due to this reason, we can declare the array large enough so that we can store queue
elements as enough as possible but the main problem with this declaration is that, most of the array slots (nearly

half) can never be reused. It will again lead to memory wastage.

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array implementation can not be used

for the large scale applications where the queues are implemented. One of the alternative of array implementation

is linked list implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n) while the time requirement for

operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Each element of

the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear pointer. The front
pointer contains the address of the starting element of the queue while the rear pointer contains the address of the

last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear both are NULL, it

indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations are Insertion and

Deletion.

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new element will be the

last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.

1. Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition front = NULL becomes
true. Now, the new element will be added as the only element of the queue and the next pointer of front and rear

pointer both, will point to NULL.

1. ptr -> data = item;

2. if(front == NULL)

3. {

4. front = ptr;

5. rear = ptr;

6. front -> next = NULL;

7. rear -> next = NULL;

8. }

In the second case, the queue contains more than one element. The condition front = NULL becomes false. In this

scenario, we need to update the end pointer rear so that the next pointer of rear will point to the new node ptr.
Since, this is a linked queue, hence we also need to make the rear pointer point to the newly added node ptr. We

also need to make the next pointer of rear point to NULL.

1. rear -> next = ptr;

2. rear = ptr;

3. rear->next = NULL;

In this way, the element is inserted into the queue. The algorithm and the C implementation is given as follows.

Algorithm
o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

o Step 4: END

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstly, we need to
check either the list is empty or not. The condition front == NULL becomes true if the list is empty, in this case ,

we simply write underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this purpose, copy the node pointed
by the front pointer into the pointer ptr. Now, shift the front pointer, point to its next node and free the node

pointed by the node ptr. This is done by using the following statements.

1. ptr = front;

2. front = front -> next;

3. free(ptr);

The algorithm and C function is given as follows.

Algorithm
o Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

CIRCULAR QUEUES

Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In
First Out) principle and the last position is connected back to the first position to make a circle. It is also
called ‘Ring Buffer’.

In a normal Queue, we can insert elements until queue becomes full. But once queue becomes full, we
can not insert the next element even if there is a space in front of queue.

 Deletions and insertions can only be performed at front and rear end respectively, as far as linear queue is

concerned.

Consider the queue shown in the following figure.

The Queue shown in above figure is completely filled and there can't be inserted any more element due to the

condition rear == max - 1 becomes true.

However, if we delete 2 elements at the front end of the queue, we still can not insert any element since the

condition rear = max -1 still holds.

This is the main problem with the linear queue, although we have space available in the array, but we can not

insert any more element in the queue. This is simply the memory wastage and we need to overcome this problem.

One of the solution of this problem is circular queue. In the circular queue, the first index comes right after the last

index. You can think of a circular queue as shown in the following figure.

Circular queue will be full when front = -1 and rear = max-1. Implementation of circular queue is similar to that

of a linear queue. Only the logic part that is implemented in the case of insertion and deletion is different from that

in a linear queue.

Complexity

Time Complexity

Front O(1)

Rear O(1)

enQueue() O(1)

deQueue() O(1)

Insertion in Circular queue

There are three scenario of inserting an element in a queue.

1. If (rear + 1)%maxsize = front, the queue is full. In that case, overflow occurs and therefore, insertion

can not be performed in the queue.

2. If rear != max - 1, then rear will be incremented to the mod(maxsize) and the new value will be

inserted at the rear end of the queue.

3. If front != 0 and rear = max - 1, then it means that queue is not full therefore, set the value of rear to

0 and insert the new element there.

Algorithm to insert an element in circular queue
o Step 1: IF (REAR+1)%MAX = FRONT

Write " OVERFLOW "

Goto step 4

[End OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE IF REAR = MAX - 1 and FRONT ! = 0

SET REAR = 0

ELSE

SET REAR = (REAR + 1) % MAX

[END OF IF]

o Step 3: SET QUEUE[REAR] = VAL

o Step 4: EXIT

Algorithm to delete an element from a circular queue

To delete an element from the circular queue, we must check for the three following conditions.

1. If front = -1, then there are no elements in the queue and therefore this will be the case of an underflow

condition.

2. If there is only one element in the queue, in this case, the condition rear = front holds and therefore, both

are set to -1 and the queue is deleted completely.

3. If front = max -1 then, the value is deleted from the front end the value of front is set to 0.

4. Otherwise, the value of front is incremented by 1 and then delete the element at the front end.

Algorithm
o Step 1: IF FRONT = -1

Write " UNDERFLOW "

Goto Step 4

[END of IF]

o Step 2: SET VAL = QUEUE[FRONT]

o Step 3: IF FRONT = REAR

SET FRONT = REAR = -1

ELSE

IF FRONT = MAX -1

SET FRONT = 0

ELSE

SET FRONT = FRONT + 1

[END of IF]

[END OF IF]

o Step 4: EXIT

Priority Queue

a priority queue is an abstract data type which is like a regular queue or stack data structure, but where additionally

each element has a "priority" associated with it. In a priority queue, an element with high priority is served before an

element with low priority. In some implementations, if two elements have the same priority, they are served according

to the order in which they were enqueued, while in other implementations, ordering of elements with the same priority

is undefined.

 OR

Priority Queue is an extension of queue with following properties.
1. Every item has a priority associated with it.
2. An element with high priority is dequeued before an element with low priority.
3. If two elements have the same priority, they are served according to their order in the queue.

https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://quiz.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

In the below priority queue, element with maximum ASCII value will have the highest priority.

A typical priority queue supports following operations.
insert(item, priority): Inserts an item with given priority.
getHighestPriority(): Returns the highest priority item.
deleteHighestPriority(): Removes the highest priority item.

How to implement priority queue?
Using Array: A simple implementation is to use array of following structure.
struct item {

 int item;

 int priority;

}

insert() operation can be implemented by adding an item at end of array in O(1) time.

getHighestPriority() operation can be implemented by linearly searching the highest priority item in array.
This operation takes O(n) time.

deleteHighestPriority() operation can be implemented by first linearly searching an item, then removing
the item by moving all subsequent items one position back.

We can also use Linked List, time complexity of all operations with linked list remains same as array. The
advantage with linked list is deleteHighestPriority() can be more efficient as we don’t have to move items.

DATA STRUCTURES

1
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – II

POINTERS

POINTER ARRAYS

✓ When an array is declared, the compiler allocates a base address and

sufficient amount of memory to contain all the elements of the array

in continuous memory locations.

✓ The base address is the location of the first element of the array

denoted by a[0].

✓ The compiler also defines the array name as constant pointer to the

first element.

✓ For Example: -

int a [5] = {1, 2, 3, 4, 5};

✓ Here if the base address is 1000 for “a” and integer occupies 4 bytes

then the five elements requires 20 bytes as shown below.

✓ The name of the array is “a” and it is defined as a constant pointer

pointing to the first element of the array and it is a[0] whose base

address is 1000 becomes the value of ”a”. It is represented as

a = &a[0] = 1000;

✓ If p is a pointer of integer type then p to point the array a is given by

the assignment statement

p = a;

which is equivalent to

p = &a[0];

www.Jntufastupdates.com 1

DATA STRUCTURES

2
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Now it is possible to access every value of a using p++ to move from

one element to another element as

P = &a[0] =1000

P+1 = &a[1] = 1004

P+2 = &a[2] = 1008

P+3 = &a[3] = 1012

P+4 = &a[4] = 1016

✓ The address of the element is calculated by using the formula

address of a[3] = base address + (3 * scale factor of int)

✓ When handling arrays we can use pointers to access the array

elements. Hence *(p+3) gives the value of a[3].

✓ Pointers can also be used to manipulate two dimensional arrays. In

one dimensional array “a” the expression.

*(a+i) or *(p+i)

LINKED LIST

✓ It is a collection of linear list of data elements.

✓ The data elements are called nodes.

✓ Each node contains two parts: data and link.

✓ The data represents integers and link is a pointer that points to next

node.

✓ The last node of the linked list is not connected to any node so it

stores the value NULL in link part.

✓ Here NULL is defined as -1

✓ NULL pointer denotes end of the list.

✓ It contains pointer variable called start node that contains the address

of first node in the list

✓ We can traverse the list starting from start node that contains first

node address and in turn first node contains second node address and

so on thus forming chain of nodes.

✓ If start == NULL then the list is empty.

www.Jntufastupdates.com 2

DATA STRUCTURES

3
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The diagrammatic representation of linked list is shown below:

NODE REPRESENTATION

✓ In C language, the code for the linked list is

 struct node

 {

 int data;

 struct node *next;

 }

SINGLE LINKED LIST

✓ “A single linked list is a linked list in which each node contains

only one link pointing to the next node in the list”.

✓ A linked list allocates space for each element separately in its own

block of memory called a "node".

✓ The list gets an overall structure by using pointers to connect all its

nodes together.

✓ Each node contains two fields - a "data" field to store element, and a

"next" field which is a pointer used to connect to the next node.

✓ Each node is allocated in the heap using malloc() and it is explicitly

de-allocated using free().

✓ The single linked list starts with a pointer to the “start” node.

✓ The single linked list is called as linear list or chain.

www.Jntufastupdates.com 3

DATA STRUCTURES

4
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The traversing of data can be in one direction only.

✓ The beginning of the linked list is stored in a "start" pointer which

points to the first node.

✓ The first node contains a pointer to the second node. The second node

contains a pointer to the third node and so on.

✓ The last node in the list has its next field set to NULL to mark the end

of the list.

ADT FOR SINGLE LINKED LIST

AbstractDataType SlinkedList

{

 instances:

finite collection of zero or more elements linked by

pointers

operations:

 Count(): Count the number of elements in the list.

 Addatbeg(x): Add x to the beginning of the list.

 Addatend(x): Add x at the end of the list.

 Insert(k, x): Insert x just after kth element.

 Delete(k): Delete the kth element.

Search(x): Return the position of x in the list otherwise

return -1 if not found

 Traverse(): Display all elements of the list

 }

www.Jntufastupdates.com 4

DATA STRUCTURES

5
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IMPLEMENTATION OF SINGLE LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a next pointer, which will

be pointing to next node of the list. This is called as self-referential

structure.

✓ Initialize the start pointer to be NULL.

struct slinklist

{

int data;

struct slinklist* next;

};

typedef struct slinklist node;

node *start = NULL;

BASIC OPERATION PERFORMED ON SINGLE LINKED LIST

The different operations performed on the single linked list are listed

as follows.

1. Creation 2. Insertion

3. Deletion 4. Traversing

5. Searching

Creating a node for Single Linked List

✓ Creating a singly linked list starts with creating a node.

✓ Sufficient memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set next field to NULL and finally return the

node.

www.Jntufastupdates.com 5

DATA STRUCTURES

6
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

node* getnode()

{

node* newnode;

newnode = new node;

printf(“Enter data”);

scanf(“%d”, &newnode -> data;

newnode -> next = NULL;

return newnode;

 }

Creating a Singly Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

✓ The next field of the new node is made to point the first node (i.e.

start node) in the list by assigning the address of the first node.

✓ The start pointer is made to point the new node by assigning the

address of the new node.

4. Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

www.Jntufastupdates.com 6

DATA STRUCTURES

7
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

}

}

}

INSERTION OF A NODE

✓ One of the most important operations that can be done in a singly

linked list is the insertion of a node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty next field.

✓ The data field of the newnode is then stored with the

information read from the user.

✓ The next field of the newnode is assigned to NULL.

✓ The newnode can then be inserted at three different places namely:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

✓ Inserting a node at specified position.

www.Jntufastupdates.com 7

DATA STRUCTURES

8
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a newnode at the

beginning of the list:

1. Get the newnode using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

newnode -> next = start;

start = newnode;

The function insert_at_beg(), is used for inserting a node at the

beginning.

void insert_at_beg()

{

node *newnode;

newnode = getnode();

if(start == NULL)

{

start = newnode;

}

else

{

newnode -> next = start;

start = newnode;

}

}

www.Jntufastupdates.com 8

DATA STRUCTURES

9
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()

{

node *newnode, *temp;

newnode = getnode();

if(start == NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

www.Jntufastupdates.com 9

DATA STRUCTURES

10
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

temp -> next = newnode;

}

}

INSERTING A NODE AT SPECIFIED POSITION

The following steps are followed, to insert a new node in an

intermediate position in the list:

1. Get the new node using getnode() then newnode = getnode();

2. Ensure that the specified position is in between first node and last node.

If not, specified position is invalid. This is done by countnode() function.

3. Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

4. After reaching the specified position, follow the steps given below:

prev -> next = newnode;

newnode -> next = temp;

The function insert_at_mid(), is used for inserting a node in the

intermediate position.

void insert_at_mid()

{

node *newnode, *temp, *prev;

www.Jntufastupdates.com 10

DATA STRUCTURES

11
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

int pos, nodectr, ctr = 1;

newnode = getnode();

printf(“ Enter the position”);

scanf(“%d”, &pos);

nodectr = countnode(start);

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

ctr++;

}

prev -> next = newnode;

newnode -> next = temp;

}

else

{

printf(“%d”, pos);

}

}

DELETION OF A NODE

✓ Another operation that can be done in a singly linked list is the

deletion of a node.

✓ Memory is to be released for the node to be deleted.

✓ It is done by using free() function.

✓ A node can be deleted from the list from three different places.

✓ Deleting a node at the beginning.

✓ Deleting a node at the end.

✓ Deleting a node at specified position.

www.Jntufastupdates.com 11

DATA STRUCTURES

12
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

start = start -> next;

free(temp);

The function delete_at_beg(), is used for deleting the first node in

the list.

void delete_at_beg()

{

node *temp;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

temp = start;

start = temp -> next;

free(temp);

printf(“Node deleted”);

}

}

www.Jntufastupdates.com 12

DATA STRUCTURES

13
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = prev = start;

while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL;

free(temp);

The function delete_at_last(), is used for deleting the last node in the

list.

void delete_at_last()

{

node *temp, *prev;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

temp = start;

www.Jntufastupdates.com 13

DATA STRUCTURES

14
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

prev = start;

while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL;

free(temp);

printf(“Node deleted”);

}

}

DELETING A NODE AT SPECIFIED POSITION

The following steps are followed, to delete a node from the specified

position in the list.

1. If list is empty then display ‘Empty List’ message

2. If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

ctr = 1;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

ctr++;

}

prev -> next = temp -> next;

free(temp);

printf(“Node deleted”);

}

www.Jntufastupdates.com 14

DATA STRUCTURES

15
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

The function delete_at_mid(), is used for deleting the specified position

node in the list.

void delete_at_mid()

{

int ctr = 1, pos, nodectr;

node *temp, *prev;

if(start == NULL)

{

printf(“ Empty List ”);

return ;

}

else

{

printf(“ Enter position of node to delete ”);

scanf(“%d”, &pos);

nodectr = countnode(start);

if(pos > nodectr)

{

printf(“ This node doesnot exist: ”);

}

if(pos > 1 && pos < nodectr)

{

temp = prev = start;

while(ctr < pos)

{

prev = temp;

temp = temp -> next;

www.Jntufastupdates.com 15

DATA STRUCTURES

16
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ctr ++;

}

prev -> next = temp -> next;

free(temp);

printf(“Node deleted”);

}

else

printf(“Invalid position”);

}

}

TRAVERSAL AND DISPLAYING A LIST (LEFT TO RIGHT)

To display the information, you have to traverse (move) a linked list,

node by node from the first node, until the end of the list is reached.

Traversing a list involves the following steps.

1. Assign the address of start pointer to a temp pointer.

2. Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the

information stored in the list from left to right.

void traverse()

{

node *temp;

temp = start;

printf(“ The contents of List (Left to Right) ”);

if(start == NULL)

printf(“ Empty List ”);

else

{

while (temp != NULL)

{

printf(“%d”, temp -> data);

www.Jntufastupdates.com 16

DATA STRUCTURES

17
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

}

}

printf(“%d”, X);

}

SEARCHING A NODE IN A SINGLE LINKED LIST

✓ Searching a single linked list means to find a particular element in the

single linked list.

✓ A single linked list consists of nodes which are divided into two parts,

the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp != NULL)

 {

www.Jntufastupdates.com 17

DATA STRUCTURES

18
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> next;

 }

 printf(“ Element not found ”);

 }

 }

ADVANTAGES OF SINGLE LINKED LIST

✓ Insertions and Deletions can be done easily.

✓ It does not need movement of elements for insertion and deletion.

✓ The space is not wasted as we can get space according to our

requirements.

✓ Its size is not fixed.

✓ It can be extended or reduced according to requirements.

✓ Elements may or may not be stored in consecutive memory available,

even then we can store the data in computer.

✓ It is less expensive.

DISADVANTAGES OF SINGLE LINKED LIST

✓ It requires more space as pointers are also stored with information.

✓ Different amount of time is required to access each element.

✓ If we have to go to a particular element then we have to go through all

those elements that come before that element.

www.Jntufastupdates.com 18

DATA STRUCTURES

19
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ We cannot traverse it from last.

✓ It is not easy to sort the elements stored in the Single linked list.

CIRCULAR LINKED LISTS

✓ Circular linked list is a linked list which consists of collection of nodes

each of which has two parts, namely the data part and the next part.

✓ The data part contains the value of the node and the next part has the

address of the next node.

✓ The last node of list has the next pointer pointing to the first node

thus making circular traversal possible in the list. A circular linked

list has no beginning and no end.

✓ In circular linked list no null pointers are used, hence all pointers

contain valid address.

IMPLEMENTATION OF CIRCULAR LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a next pointer, which will

be pointing to next node of the list. This is called as self-referential

structure.

✓ Initialize the start pointer to be NULL.

www.Jntufastupdates.com 19

DATA STRUCTURES

20
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

struct clinklist
{

int data;

struct clinklist* next;

};

typedef struct clinklist node;

node *start = NULL;

BASIC OPERATION PERFORMED ON CIRCULAR LINKED LIST

The operations on the circular linked list are listed as follows.

1. Creation

1. Insertion

2. Deletion

3. Traversing

4. Display

CREATING A NODE FOR CIRCULAR LINKED LIST

✓ Creating a circular linked list starts with creating a node. Sufficient

memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set next field to NULL and finally return the

node.

node* getnode()

{

node* newnode;

newnode = new node;

printf(“ Enter data ”);

scanf(“%d”, &newnode -> data);

newnode -> next = NULL;

www.Jntufastupdates.com 20

DATA STRUCTURES

21
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

return newnode;

}

Creating a Circular Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

 temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

4. Repeat the above steps ‘n’ times.

5. newnode -> next = start;

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

www.Jntufastupdates.com 21

DATA STRUCTURES

22
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newnode;

}

newnode -> next = start;

}

}

INSERTING A NODE

✓ One operation performed on circular linked list is the insertion of a

node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty next field. The

data field of the newnode is then stored with the information read

from the user. The next field of the newnode is assigned to NULL.

✓ The newnode can then be inserted at three different positions:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a new node at the

beginning of the circular list:

1. Get the new node using getnode().

newnode = getnode();

www.Jntufastupdates.com 22

DATA STRUCTURES

23
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2. If the list is empty, assign new node as start.

start = newnode;

newnode -> next = start;

3. If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start)

last = last -> next;

newnode -> next = start;

start = newnode;

last -> next = start;

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

newnode -> next = start;

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != start)

www.Jntufastupdates.com 23

DATA STRUCTURES

24
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = temp -> next;

temp -> next = newnode;

newnode -> next = start;

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If the list is empty, display a message ‘Empty List’.

2. If the list is not empty, follow the steps given below:

last = temp = start;

while(last -> next != start)

last = last -> next;

start = start -> next;

last -> next = start;

3. After deleting the node, if the list is empty then start = NULL.

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If the list is empty, display a message ‘Empty List’.

2. If the list is not empty, follow the steps given below:

www.Jntufastupdates.com 24

DATA STRUCTURES

25
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

temp = start;

prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

4. After deleting the node, if the list is empty then start = NULL

TRAVERSING A CIRCULAR LINKED LIST FROM LEFT TO

RIGHT

✓ To display the list, we have to traverse (move) the circular linked list,

node by node from the first node, until the end of the list is reached.

✓ Traversing a list involves the following steps.

 1. Assign the address of start pointer to a temp pointer.

 2. Display the information from the data field of each node.

✓ The function traverse() is used for traversing and displaying the

information stored in the list from left to right.

 void traverse()

{

 node *temp;

 temp = start;

 printf(“ The contents of List (Left to Right)”);

 if(start == NULL)

 printf(“ Empty List ”);

www.Jntufastupdates.com 25

DATA STRUCTURES

26
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

else

 {

 do

 {

 printf(“%d”, temp -> data);

 temp = temp -> next;

 } while (temp != start);

 }

 }

SEARCHING A NODE IN A CIRCULAR LINKED LIST

✓ Searching a circular linked list means to find a particular element in

the circular linked list.

✓ A circular linked list consists of nodes which are divided into two

parts, the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

www.Jntufastupdates.com 26

DATA STRUCTURES

27
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp->next != start)

 {

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> next;

 }

 printf(“ Element not found ”);

 }

 }

DOUBLY LINKED LSITS

✓ A double linked list is a two-way list in which all nodes will have two

links.

✓ This helps in accessing both successor node and predecessor node

from the given node position.

✓ It provides bi-directional traversing.

✓ Each node has three fields namely

✓ Left link

✓ Data

www.Jntufastupdates.com 27

DATA STRUCTURES

28
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Right link

✓ The left link points to the predecessor node and the right link points

to the successor node. The data field stores the required data. The

beginning of the double linked list is stored in a "start" pointer which

points to the first node.

✓ The first node’s left link and last node’s right link is set to NULL.

IMPLEMENTATION OF DOUBLY LINKED LIST

Before writing the code to build the list, we need to create a start

node, used to create and access other nodes in the linked list.

✓ Creating a structure with one data item and a right pointer, which will

be pointing to next node of the list and left pointer pointing to the

previous node. This is called as self-referential structure.

✓ Initialize the start pointer to be NULL.

struct dlinklist

{

struct dlinklist * left;

int data;

struct dlinklist * right;

};

typedef struct dlinklist node;

node *start = NULL;

www.Jntufastupdates.com 28

DATA STRUCTURES

29
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BASIC OPERATION PERFORMED ON DOUBLY LINKED LIST

The different operations performed on the doubly linked list are listed

as follows.

1. Creation

2. Insertion

3. Deletion

4. Traversing

5. Display

Creating a node for Doubly Linked List

✓ Creating a double linked list starts with creating a node.

✓ Sufficient memory has to be allocated for creating a node.

✓ The information is stored in the memory, allocated by using the

malloc() function.

✓ The function getnode(), is used for creating a node, after allocating

memory for the node, the information for the node data part has to be

read from the user and set left and right fields to NULL and finally

return the node.

node* getnode()

{

node* newnode;

newnode = new node;

printf(“ Enter data ”);

scanf(“%d”, &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

Creating a Doubly Linked List with ‘n’ number of nodes

The following steps are to be followed to create ‘n’ number of nodes.

1. Get the new node using getnode().

www.Jntufastupdates.com 29

DATA STRUCTURES

30
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below.

✓ The left field of the new node is made to point the previous node.

✓ The previous nodes right field must be assigned with address of the

new node.

4. Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes

void createlist(int n)

{

int i;

node *newnode;

node *temp;

for(i = 0; i < n ; i++)

{

newnode = getnode();

if(start = = NULL)

{

start = newnode;

}

else

{

temp = start;

www.Jntufastupdates.com 30

DATA STRUCTURES

31
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

while(temp -> right != NULL)

{

temp = temp -> right;

 }

temp -> right = newnode;

newnode -> left = temp;

}

}
}

INSERTION OF A NODE

✓ One of the most important operation that can be done in a doubly

linked list is the insertion of a node.

✓ Memory is to be allocated for the newnode before reading the data.

✓ The newnode will contain empty data field and empty left and right

fields.

✓ The data field of the newnode is then stored with the information read

from the user.

✓ The left and right fields of the newnode are set to NULL.

✓ The newnode can then be inserted at three different places namely:

✓ Inserting a node at the beginning.

✓ Inserting a node at the end.

✓ Inserting a node at specified position.

INSERTING A NODE AT THE BEGINNING

The following steps are to be followed to insert a newnode at the

beginning of the list:

1. Get the newnode using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

newnode -> right = start;

start -> left = newnode;

start = newnode;

www.Jntufastupdates.com 31

DATA STRUCTURES

32
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSERTING A NODE AT THE END

The following steps are followed to insert a new node at the end of the

list:

1. Get the new node using getnode() then newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty follow the steps given below:

temp = start;

while(temp -> right != NULL)

temp = temp -> right;

temp -> right = newnode;

newnode -> left = temp;

INSERTING A NODE AT SPECIFIED POSITION

The following steps are followed, to insert a new node in an

intermediate position in the list:

1. Get the new node using getnode() then newnode = getnode();

2. Ensure that the specified position is in between first node and last node.

If not, specified position is invalid. This is done by countnode() function.

www.Jntufastupdates.com 32

DATA STRUCTURES

33
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3. Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

4. After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode ->right = temp ->right;

temp -> right ->left = newnode;

temp -> right = newnode;

DELETION OF A NODE

✓ Another operation that can be done in a doubly linked list is the

deletion of a node.

✓ Memory is to be released for the node to be deleted.

✓ A node can be deleted from the list from three different places.

✓ Deleting a node at the beginning.

✓ Deleting a node at the end.

✓ Deleting a node at specified position.

DELETING A NODE AT THE BEGINNING

The following steps are followed, to delete a node at the beginning of

the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

start = start -> right;

start -> left = NULL;

free(temp);

www.Jntufastupdates.com 33

DATA STRUCTURES

34
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELETING A NODE AT THE END

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display ‘Empty List’ message.

2. If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right != NULL)

{

temp = temp ->right;

}

temp –> left -> right = NULL;

free(temp);

DELETING A NODE AT SPECIFIED POSITION

The following steps are followed, to delete a node from the specified

position in the list.

1. If list is empty then display ‘Empty List’ message

2. If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)

{

temp = start;

www.Jntufastupdates.com 34

DATA STRUCTURES

35
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ctr = 1;

while(ctr < pos)

{

temp = temp -> right;

ctr++;

}

temp -> right -> left = temp -> left;

temp -> left -> right = temp -> right;

free(temp);

}

TRAVERSAL AND DISPLAYING A LIST

✓ To display the list, we have to traverse (move) the double linked list,

node by node from the first node, until the end of the list is reached.

✓ To traverse double linked list from left to rightwe have the following

steps:

 1. If list is empty then display ‘Empty List’ message.

 2. If the list is not empty, follow the steps given below:

 temp = start;

 while(temp != NULL)

 {

 printf(“%d”, temp -> data);

 temp = temp -> right;

 }

✓ To display the list, we have to traverse (move) the double linked list,

node by node from the first node, until the end of the list is reached.

www.Jntufastupdates.com 35

DATA STRUCTURES

36
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The following steps are followed, to traverse a list from left to right:

 1. If list is empty then display ‘Empty List’ message.

 2. If the list is not empty, follow the steps given below:

 temp = start;

 while(temp!= NULL)

 {

 printf(“%d”, temp -> data);

 temp = temp -> right;

 }

COUNTING THE NUMBER OF NODES

The following code will count the number of nodes exist in the list

(using recursion).

int countnode(node *start)

{

if(start = = NULL)

return 0;

else

return(1 + countnode(start ->right));

}

SEARCHING A NODE IN A DOUBLE LINKED LIST

✓ Searching a double linked list means to find a particular element in

the double linked list.

✓ A double linked list consists of nodes which are divided into two parts,

the data part and the next part.

✓ So searching means finding whether a given value is present in the

data part of the node or not.

www.Jntufastupdates.com 36

DATA STRUCTURES

37
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ If it is present, then display element found otherwise element not

found.

 void search()

{

 node *temp;

 int value = 30;

 temp = start;

 if(start == NULL)

 printf(“ Empty List ”);

 else

 {

while (temp->right != NULL)

 {

 if(value = temp->data)

 {

 printf(“ Element found ”);

 return;

 }

 temp = temp -> right;

 }

 printf(“ Element not found ”);

 }

 }

LINKED STACKS

✓ A stack is a data structure in which addition of new element or

deletion of an existing element always takes place at the same end.

✓ This end is known as top of stack.

www.Jntufastupdates.com 37

DATA STRUCTURES

38
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ When an item is added to a stack, the operation is called push, and

when an item is removed from the stack the operation is called pop.

✓ Stack is also called as Last-In-First-Out (LIFO) list.

✓ The element that is inserted last is the first element to be removed

from the stack.

✓ Stack can be implemented using linked list and the same operations

can be performed at the end of the list using top pointer.

REPRESENTATION OF STACK USING LINKED LIST

✓ A stack is represented using an array is easy, but the drawback is

that the array must be declared to have some fixed size.

✓ In case the stack is a very small or its maximum size is known in

advance, then the array implementation of the stack gives an efficient

implementation.

✓ But if the array size cannot be determined in advance, then linked

representation is used.

✓ The storage requirement of linked representation of the stack with n

elements is O(n), and the time requirement for the operations is O(1).

✓ In a linked stack, every node has two parts—one that stores data and

another that stores the address of the next node.

✓ The START pointer of the linked list is used as TOP. All insertions and

deletions are done at the node pointed by TOP.

✓ If TOP = NULL, then it indicates that the stack is empty.

www.Jntufastupdates.com 38

DATA STRUCTURES

39
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OPERATIONS ON LINKED STACKS

✓ There are three possible operations performed on a stack. They are

push, pop and peek.

✓ Push: Allows adding an element at the top of the stack.

✓ Pop: Allows removing an element from the top of the stack.

✓ Peek: it returns the value of topmost element of the stack

Push Operation

✓ Create a temporary node and store the value of x in the data part of

the node.

✓ Now make next part of temp point to top and then top point to temp.

✓ That will make the newnode as the topmost element in the stack.

Algorithm for PUSH Operation

Step 1: Allocate memory for the temporary node and name it as temp

Step 2: Set temp - > data = x

Step 3: if top = NULL

 Set temp - > next = NULL

 Set top = temp

else

 Set temp - > next = top

 Set top = temp

Step 4: Exit

EXAMPLE

✓ The push operation is used to insert an element into the stack. The

new element is added at the topmost position of the stack.

✓ To insert an element with value 20, we first check if top=NULL. Then

we allocate memory for a newnode(temp), store the value in its data

part and NULL in its next part.

www.Jntufastupdates.com 39

DATA STRUCTURES

40
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The newnode(temp) will then be called top. However, if top!=NULL,

then we insert the newnode(temp) at the beginning of the linked stack

and name this newnode(temp) as top.

Pop Operation

✓ The data in the topmost node of the stack is first stored in a variable

called x.

✓ Then a temporary pointer is created to point to top.

✓ The top is now safely moved to the next node below it in the stack.

✓ Temp node is deleted and the item is returned.

Algorithm for POP Operation

Step 1: if top = NULL

 display Underflow and goto step 6

Step 2: Set x = top - > data

Step 3: Set temp = top

Step 4: Set top = top - > next

Step 5: free temp

Step 6: Exit

EXAMPLE:

✓ The pop operation is used to delete the topmost element from a stack.

Before deleting the value, we must first check if top=NULL, then we

display stack is empty and no more deletions can be done.

✓ If an attempt is made to delete a value from a stack that is already

empty, an underflow message is printed.

www.Jntufastupdates.com 40

DATA STRUCTURES

41
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ In case top!=NULL, then we will delete the node pointed by top, and

make top point to the second element of the linked stack.

IMPLEMENTATION OF STACKS USING LINKED LIST

#include<stdio.h>

struct node

{

 int data;

 struct node *next;

}*top = NULL;

void push(int);

void pop();

void display();

int main(void)

{

 int choice, value;

 clrscr();

 printf("\n:: Stack using Linked List ::\n");

 while(1)

{

 printf("1. Push\n2. Pop\n3. Display\n4. Exit\n");

 printf("Enter your choice: ");

www.Jntufastupdates.com 41

DATA STRUCTURES

42
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 scanf("%d", &choice);

 switch(choice)

 {

 case 1: printf("Enter the value to be insert: ");

 scanf("%d", &value);

 push(value);

 break;

 case 2: pop(); break;

 case 3: display(); break;

 case 4: exit(0);

default: printf("\nWrong selection!!! Please try

again!!!\n");

 }

 }

}

void push(int value)

{

 struct node *newnode;

 newnode = (struct node*)malloc(sizeof(struct node));

 newnode->data = value;

 if(top == NULL)

 newnode->next = NULL;

 else

 newnode->next = top;

 top = newnode;

 printf("\nInsertion is Success!!!\n");

}

void pop()

{

 if(top == NULL)

 printf("\nStack is Empty!!!\n");

 else

www.Jntufastupdates.com 42

DATA STRUCTURES

43
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 {

 struct node *temp = top;

 printf("\nDeleted element: %d", temp->data);

 top = temp->next;

 free(temp);

 }

}

void display()

{

 if(top == NULL)

 printf("\nStack is Empty!!!\n");

 else

 {

 struct node *temp = top;

 while(temp->next != NULL)

 {

 printf("%d--->",temp->data);

 temp = temp -> next;

 }

 printf("%d--->NULL",temp->data);

 }

}

LINKED QUEUES AND ITS REPRESENTATION

✓ Queue is a linear data structure that permits insertion of new element

at one end and deletion of an element at the other end.

✓ The end at which the deletion of an element take place is called front,

and the end at which insertion of a new element can take place is

called rear.

✓ The deletion or insertion of elements can take place only at the front

or rear end called dequeue and enqueue.

www.Jntufastupdates.com 43

DATA STRUCTURES

44
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The first element that gets added into the queue is the first one to get

removed from the queue.

✓ Hence the queue is referred to as First-In-First-Out list (FIFO).

✓ We can perform the similar operations on two ends of the list using

two pointers front pointer and rear pointer.

OPERATIONS ON QUEUES USING LINKED LIST

Enqueue operation

✓ In linked list representation of queue, the addition of new element to

the queue takes place at the rear end.

✓ It is the normal operation of adding a node at the end of a list.

Algorithm for Enqueue(inserting an element)

Allocate memory for the new node and name it as temp

 set newnode - > data = value

 set newnode -> next = NULL

 if (front = NULL) then

 set rear = front = newnode

 set rear - > next = front -> next = NULL

else

 set rear - > next = temp

 set rear = rear - > next

 set rear -> next = NULL

www.Jntufastupdates.com 44

DATA STRUCTURES

45
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Dequeue operation

✓ The dequeue operation deletes the first element from the front end of

the queue.

✓ Initially it is checked, if the queue is empty.

✓ If it is not empty, then return the value in the node pointed by front,

and moves the front pointer to the next node.

Algorithm for Dequeue(deleting an element)

if (front = NULL)

 display “Queue is empty”

 return

else

 while(front != NULL)

 temp = front

 front = front - > next

 free(temp)

www.Jntufastupdates.com 45

DATA STRUCTURES

46
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IMPLEMENTATION OF QUEUES USING LINKED LIST

#include<stdio.h>

#include <stdlib.h>

struct queue

{

 int data;

 struct queue *next;

};

typedef struct queue node;

node *front = NULL;

node *rear = NULL;

node* getnode()

{

 node *temp;

 temp = (node *) malloc(sizeof(node)) ;

 printf("\n Enter data ");

 scanf("%d", &temp -> data);

temp -> next = NULL;

 return temp;

}

void insertQ()

{

 node *newnode;

 newnode = getnode();

 if(newnode == NULL)

 {

 printf("\n Queue Full");

 return;

 }

 if(front == NULL)

 {

 front = newnode;

www.Jntufastupdates.com 46

DATA STRUCTURES

47
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 rear = newnode;

 }

 else

 {

 rear -> next = newnode;

 rear = newnode;

 }

 printf("\n\n\t Data Inserted into the Queue..");

}

void deleteQ()

{

 node *temp;

 if(front == NULL)

 {

 printf("\n\n\t Empty Queue..");

 return;

 }

 temp = front;

 front = front -> next;

 printf("\n\n\t Deleted element from queue is %d ", temp ->data);

 free(temp);

}

void displayQ()

{

 node *temp;

 if(front == NULL)

 {

 printf("\n\n\t\t Empty Queue ");

 }

 else

 {

 temp = front;

www.Jntufastupdates.com 47

DATA STRUCTURES

48
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf("\n\n\n\t\t Elements in the Queue are: ");

 while(temp != NULL)

 {

 printf("%5d ", temp -> data);

 temp = temp -> next;

 }

 }

}

char menu()

{

 char ch;

 clrscr();

 printf("\n \t..Queue operations using pointers.. ");

 printf("\n\t -----------**********-------------\n");

 printf("\n 1. Insert ");

 printf("\n 2. Delete ");

 printf("\n 3. Display");

 printf("\n 4. Quit ");

 printf("\n Enter your choice: ");

 ch = getche();

 return ch;

}

int main(void)

{

 char ch;

 do

 {

 ch = menu();

 switch(ch)

 {

 case '1' :

 insertQ();

www.Jntufastupdates.com 48

DATA STRUCTURES

49
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 break;

 case '2' :

 deleteQ();

 break;

 case '3' :

 displayQ();

 break;

 case '4':

 return;

 }

 } while(ch != '4');

 return 0;

}

POLYNOMIALS

A polynomial is of the form

Where, ci is the coefficient of the ith term and n is the degree of the

polynomial. Some examples are:

5x2 + 3x + 1

12x3 + 4

4x6 + 10x4 – 5x + 3

5x4 – 8x3 + 2x2 + 4x1 + 9

23x9 + 18x7 – 41x6 + 163x4 – 5x + 3

REPRESENTATION OF POLYNOMIALS

✓ It is not necessary to write terms of the polynomials in decreasing

order of degree.

✓ In other words the two polynomials 1 + x and x + 1 are equivalent.

✓ The computer implementation requires implementing polynomials as a

list of pairs of coefficient and exponent.

www.Jntufastupdates.com 49

DATA STRUCTURES

50
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ Each of these pairs will constitute a structure, so a polynomial will be

represented as a list of structures.

✓ A linked list structure that represents polynomials 5x4 – 8x3 + 2x2 +

4x1 + 9

Advantages

✓ Save space

✓ Easy to maintain

✓ Do not need to allocate memory size initially

Disadvantages

✓ It is difficult to back up to the start of the list

✓ It is not possible to jump to the beginning of the list from the end of

the list

POLYNOMIAL ADDITION

✓ To add two polynomials we need to scan them once.

✓ If we find terms with the same exponent in the two polynomials then

we add the coefficients otherwise we copy the term of larger exponent

into the sum and go on.

✓ When we reach at the end of one of the polynomial then remaining

part of the other is copied into the sum.

✓ To add two polynomials follow the following steps:

✓ Read two polynomials.

✓ Add them.

✓ Display the resultant polynomial.

#include<stdio.h>

#include<stdlib.h>

www.Jntufastupdates.com 50

DATA STRUCTURES

51
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

struct node

{

 int coeff;

 int pow;

 struct node *next;

};

void readpolynomial(struct node** poly)

{

 int coeff, exp, mterms;

 struct node* temp = (struct node *) malloc(sizeof(struct node));

 *poly = temp;

 do

 {

 printf(“\n Coefficient: “);

 scanf(“%d”, &coeff);

 printf(“\n Exponent: “);

 scanf(%d”, &pow);

temp -> coeff = coeff;

 temp -> pow = exp;

 temp -> next = NULL;

 printf(“Have more terms: 1 for Y and 0 for N”);

 scanf(“%d”, &mterms);

 if(mterms)

 {

 temp -> next = (struct node *) malloc(sizeof(struct node));

 temp -> next = NULL;

 }

 }while(mterms);

}

void displaypolynomial(struct node* poly)

{

 printf(“\n Polynomial Expression is “);

www.Jntufastupdates.com 51

DATA STRUCTURES

52
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 while(poly!=NULL)

 {

 printf(“%dX^%d”, poly -> coeff, poly -> pow);

poly = poly -> next;

 if(poly!=NULL)

 printf(“ + “);

 }

}

void addpolynomial(struct node**result, struct node* first, struct node*

second)

{

 struct node* temp = (struct node *)malloc(sizeof(struct node));

 temp -> next = NULL;

 *result = temp;

 while(first && second)

 {

 if(first -> pow > second -> pow)

 {

 temp -> coeff = first -> coeff;

 temp -> pow = first -> pow;

 first = first -> next;

 }

else if(first -> pow < second -> pow)

 {

 temp -> coeff = second -> coeff;

 temp -> pow = second -> pow;

 second = second -> next;

 }

 else

 {

 temp -> coeff = first -> coeff + second -> coeff;

 temp -> pow = first -> pow;

www.Jntufastupdates.com 52

DATA STRUCTURES

53
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 first = first -> next;

 second = second -> next;

 }

 if(first && second)

 {

 temp->next = (struct Node*)malloc(sizeof(struct Node));

 temp = temp->next;

 temp->next = NULL;

 }

 }

 while(first || second)

 {

 temp -> next = (struct Node*)malloc(sizeof(struct Node));

 temp = temp -> next;

 temp -> next = NULL;

 if(first)

 {

 temp -> coeff = first -> coeff;

 temp -> pow = first -> pow;

 first = first -> next;

 }

 else if(second)

 {

 temp -> coeff = second -> coeff;

 temp -> pow = second -> pow;

 second = second -> next;

 }

 }

}

int main(void)

{

 struct node* first = NULL;

www.Jntufastupdates.com 53

DATA STRUCTURES

54
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 struct node* second = NULL;

 struct node* result = NULL;

 printf("\nEnter the corresponding data:-\n");

 printf("\nFirst polynomial:\n");

 readpolynomial(&first);

 displaypolynomial(first);

 printf("\nSecond polynomial:\n");

 readpolynomial(&second);

 displaypolynomial(second);

 addpolynomials(&result, first, second);

 displaypolynomial(result);

 return 0;

}

SPARSE MATRIX

✓ “A matrix that contains very few number of non-zero elements is

called sparse matrix”

✓ “A matrix that contains more number of zero values when compared

with non-zero values is called a sparse matrix”

SPARSE MATRIX REPRESENTATION

For linked representation, we need three structures.

1. head node

2. row node

www.Jntufastupdates.com 54

DATA STRUCTURES

55
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3. column node

The matrix representation for the sparse matrix is shown below for

example.

In the above matrix representation there are 5 rows, 6 columns and 6

non-zero values. The linked representation is as follows:

HEADER LINKED LIST

✓ A header linked list is a special type of linked list which contains a

header node at the beginning of the list.

✓ In a header linked list, START will not point to the first node of the

list but START will contain the address of the header node.

www.Jntufastupdates.com 55

DATA STRUCTURES

56
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The following are the two types of a header linked list:

✓ Grounded header linked list which stores NULL in the next

field of the last node.

✓ Circular header linked list which stores the address of the

header node in the next field of the last node. So header node

will denote the end of the list.

✓ In other linked lists, if START = NULL, then it is an empty header

linked list.

✓ Let us see how a grounded header linked list is stored in the memory.

In a grounded header linked list, a node has two fields, DATA and

NEXT.

✓ The DATA field will store the information part and the NEXT field will

store the address of the node in sequence.

✓ Note that START stores the address of the header node. The NEXT

field of the header node stores the address of the first node of the list.

✓ This node stores H. The corresponding NEXT field stores the address

of the next node.

✓ Hence, we see that the first node can be accessed by writing

FIRST_NODE = START -> NEXT and not by writing START = FIRST_

NODE.

✓ Let us now see how a circular header linked list is stored in the

memory. The last node in this case stores the address of the header

node (instead of –1).

✓ Hence, we see that the first node can be accessed by writing

FIRST_NODE = START -> NEXT and not writing START =

FIRST_NODE.

www.Jntufastupdates.com 56

DATA STRUCTURES

57
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm for Insertion

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 10

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

Step 4: SET PTR = START -> NEXT

Step 5: SET NEW_NODE -> DATA = VAL

Step 6: Repeat Step 7 while PTR -> DATA != NUM

Step 7: SET PTR = PTR -> NEXT

Step 8: NEW_NODE -> NEXT = PTR -> NEXT

Step 9: SET PTR -> NEXT = NEW_NODE

Step 10: EXIT

Algorithm for Deletion

Step 1: SET PTR = START->NEXT

Step 2: Repeat Steps 3 and 4 while

PTR DATA != VAL

Step 3: SET PREPTR = PTR

Step 4: SET PTR = PTR -> NEXT

Step 5: SET PREPTR -> NEXT = PTR -> NEXT

Step 6: FREE PTR

Step 7: EXIT

www.Jntufastupdates.com 57

www.Jntufastupdates.com 1

www.Jntufastupdates.com 2

www.Jntufastupdates.com 3

www.Jntufastupdates.com 4

www.Jntufastupdates.com 5

www.Jntufastupdates.com 6

www.Jntufastupdates.com 7

www.Jntufastupdates.com 8

www.Jntufastupdates.com 9

www.Jntufastupdates.com 10

www.Jntufastupdates.com 11

www.Jntufastupdates.com 12

www.Jntufastupdates.com 13

www.Jntufastupdates.com 14

www.Jntufastupdates.com 15

www.Jntufastupdates.com 16

www.Jntufastupdates.com 17

www.Jntufastupdates.com 18

www.Jntufastupdates.com 19

www.Jntufastupdates.com 20

www.Jntufastupdates.com 21

www.Jntufastupdates.com 22

www.Jntufastupdates.com 23

www.Jntufastupdates.com 24

www.Jntufastupdates.com 25

www.Jntufastupdates.com 26

www.Jntufastupdates.com 27

Page 1 of 29

SCS1201_Advanced Data Structures

UNIT – II

THREADED BINARY TREE

A binary tree is represented using array representation or linked list

representation. When a binary tree is represented using linked list representation, if any

node is not having a child we use NULL pointer in that position. In any binary tree linked

list representation, there are more number of NULL pointer than actual pointers.

Generally, in any binary tree linked list representation, if there are 2N number of

reference fields, then N+1 number of reference fields are filled with NULL (N+1 are

NULL out of 2N). This NULL pointer does not play any role except indicating there is

no link (no child).

A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary

Tree", which make use of NULL pointer to improve its traversal processes. In threaded

binary tree, NULL pointers are replaced by references to other nodes in the tree,

called threads.

A threaded binary tree defined as follows:

"A binary tree is threaded by making all right child pointers that would normally be null

point to the inorder successor of the node (if it exists), and all left child pointers that

would normally be null point to the inorder predecessor of the node."

Why do we need Threaded Binary Tree?

Binary trees have a lot of wasted space: the leaf nodes each have 2 null pointers. We can

use these pointers to help us in inorder traversals. Threaded binary tree makes the tree tra-

versal faster since we do not need stack or recursion for traversal.

Comparison between a normal binary tree and threaded binary tree

Types of threaded binary trees:

Single Threaded: each node is threaded towards either the in-order predecessor or succes-

sor (left or right) means all right null pointers will point to inorder successor OR all left

null pointers will point to inorder predecessor.

Page 2 of 29

Double threaded: each node is threaded towards both the in-order predecessor and suc-

cessor (left and right) means all right null pointers will point to inorder succes-

sor AND all left null pointers will point to inorder predecessor.

Single Threaded: each node is threaded towards either the in-order predecessor or succes-

sor (left or right) means all right null pointers will point to inorder successor OR all left

null pointers will point to inorder predecessor.

Implementation:

Let’s see how the Node structure will look like

class Node{

 Node left;

 Node right;

 int data;

Page 3 of 29

 boolean rightThread;

 public Node(int data){

 this.data = data;

 rightThread = false;

 }

}

In normal BST node we have left and right references and data but in threaded binary tree

we have boolean another field called “rightThreaded”. This field will tell whether node’s

right pointer is pointing to its inorder successor, but how, we will see it further.

Operations:

Insert node into tree

Print or traverse the tree.

Insert():

The insert operation will be quite similar to Insert operation in Binary search tree with

few modifications.To insert a node our first task is to find the place to insert the node.

• Take current = root .

• Start from the current and compare root.data with n.

• Always keep track of parent node while moving left or right.

• if current.data is greater than n that means we go to the left of the root, if after

moving to left, the current = null then we have found the place where we will

insert the new node. Add the new node to the left of parent node and make the

right pointer points to parent node and rightThread = true for new node.

• if current.data is smaller than n that means we need to go to the right of the root,

while going into the right sub tree, check rightThread for current node, means

right thread is provided and points to the in order successor, if rightThread = false

then and current reaches to null, just insert the new node else if rightThread = true

then we need to detach the right pointer (store the reference, new node right refer-

ence will be point to it) of current node and make it point to the new node and

make the right reference point to stored reference.

Page 4 of 29

Traverse():

Traversing the threaded binary tree will be quite easy, no need of any recursion or any

stack for storing the node. Just go to the left most node and start traversing the tree using

right pointer and whenever rightThread = false again go to the left most node in right sub-

tree.

Node leftMost(Node n) {

 Node ans = n;

 if (ans == null) {

 return null;

 }

 while (ans.left != null) {

 ans = ans.left;

 }

 return ans;

}

void inOrder(Node n) {

 Node cur = leftmost(n);

 while (cur != null) {

 print(cur);

 if (cur.rightThread) {

 cur = cur.right;

 } else {

 cur = leftmost(cur.right);

 }

 }

}

Page 5 of 29

HEIGHT BALANCED TREES (AVL TREES)

 The Height balanced trees were developed by researchers Adelson-Velskii and

Landis. Hence these trees are also called AVL trees. Height balancing attempts to

maintain the balance factor of the nodes within limit.

Height of the tree: Height of a tree is the number of nodes visited in traversing a branch

that leads to a leaf node at the deepest level of the tree.

Balance factor: The balance factor of a node is defined to be the difference between the

height of the node’s left subtree and the height of the node’s right subtree.

 Consider the following tree. The left height of the tree is 5, because there are 5

nodes (45, 40, 35, 37 and 36) visited in traversing the branch that leads to a leaf node at

the deepest level of this tree.

 Balance factor = height of left subtree – height of the right subtree

 In the following tree the balance factor for each and every node is calculated and

shown. For example, the balance factor of node 35 is (0 – 2) = - 2.

 The tree which is shown below is a binary search tree. The purpose of going for a

binary search tree is to make the searching efficient. But when the elements are added to

the binary search tree in such a way that one side of the tree becomes heavier, then the

searching becomes inefficient. The very purpose of going for a binary search tree is not

served. Hence we try to adjust this unbalanced tree to have nodes equally distributed on

both sides. This is achieved by rotating the tree using standard algorithms called the

AVL rotations. After applying AVL rotation, the tree becomes balanced and is called the

AVL tree or the height balanced tree.

Page 6 of 29

The tree is said to be balanced if each node consists of a balance factor either -1 or 0 or 1.

If even one node has a balance factor deviated from these values, then the tree is said to

be unbalanced. There are four types of rotations. They are:

1. Left-of-Left rotation.

2. Right-of-Right rotation.

3. Right-of-Left rotation.

4. Left-of-Right rotation.

Left-of-Left Rotation

 Consider the following tree. Initially the tree is balanced. Now a new node 5 is

added. This addition of the new node makes the tree unbalanced as the root node has a

balance factor 2. Since this is the node which is disturbing the balance, it is called the

pivot node for our rotation. It is observed that the new node was added as the left child to

the left subtree of the pivot node. The pointers P and Q are created and made to point to

the proper nodes as described by the algorithm. Then the next two steps rotate the tree.

The last two steps in the algorithm calculates the new balance factors for the nodes and is

seen that the tree has become a balanced tree.

Algorithm

Page 7 of 29

LEFT-OF-LEFT(pivot)
P = left(pivot)

Q = right(P)

Root = P

Right(P) = pivot

Left(pivot) = Q

Bal(pivot) = 0

Bal(right(pivot)) = 0

End LEFT-OF-LEFT

Right-of- Right Rotation

 In this case, the pivot element is fixed as before. The new node is found to be

added as the right child to the right subtree of the pivot element. The first two steps in

the algorithm sets the pointer P and Q to the correct positions. The next two steps rotate

the tree to balance it. The last two steps calculate the new balance factor of the nodes.

Algorithm

Page 8 of 29

RIGHT-OF-RIGHT(pivot)
P = right(pivot)

Q = left(P)

Root = P

Left(P) = pivot

Right(pivot) = Q

Bal(pivot) = 0

Bal(left(pivot)) = 0

End RIGHT-OF-RIGHT

Right-of-Left Rotation

 In this following tree, a new node 19 is added. This is added as the right child to

the left subtree of the pivot node. The node 20 fixed as the pivot node, as it disturbs the

balance of the tree. In the first two steps the pointers P and Q are positioned. In the next

four steps, tree is rotated. In the remaining steps, the new balance factors are calculated.

Page 9 of 29

Algorithm

RIGHT-OF-LEFT(pivot)
P = left(pivot)

Q = right(P)

Root = Q

Left(Q) = P

Right(Q) = Pivot

Left(pivot) = right(Q)

Right(P) = left(Q)

If Bal(pivot) = 0

 Bal(left(pivot)) = 0

 Bal(right(pivot)) = 0

Else

 If Bal(pivot) = 1

 Bal(pivot) = 0

 Bal(left(pivot)) = 0

 Bal(right(pivot)) = -1

 Else

 Bal(pivot) = 0

 Bal(left(pivot)) = 1

 Bal(right(pivot)) = 0

 End if

End if

End RIGHT-OF-LEFT

Left-of-Right

 In the following tree, a new node 21 is added. The tree becomes unbalanced and

the node 20 is the node which has a deviated balance factor and hence fixed as the pivot

node. In the first two steps of the algorithm, the pointers P and Q are positioned. In the

next 4 steps the tree is rotated to make it balanced. The remaining steps calculate the new

balance factors for the nodes in the tree.

Page 10 of 29

Algorithm

LEFT-OF-RIGHT(pivot)

P = right(pivot)

Q = left(P)

Root= Q

Right(Q) = P

Left(Q) = Pivot

Right(pivot) = left(Q)

Left(P) = right(Q)

If Bal(pivot) = 0

 Bal(right(pivot)) = 0

 Bal(left(pivot)) = 0

Else

 If Bal(pivot) = 1

 Bal(pivot) = 0

 Bal(right(pivot)) = 0

 Bal(left(pivot)) = -1

 Else

 Bal(pivot) = 0

 Bal(right(pivot)) = 1

 Bal(left(pivot)) = 0

 End if

End if

End LEFT-OF-RIGHT

B – TREES

Multiway search tree (m-way search tree): Multiway search tree of order n is a tree in

which any node may contain maximum n-1 values and can have maximum n children.

 Consider the following tree. Every node in the tree has one or more than one

values stored in it. The tree shown is of order 3. Hence this tree can have maximum 3

children and each node can have maximum 2 values. Hence it is an m-way search tree.

Page 11 of 29

B – Tree: B – tree is a m-way search tree of order n that satisfies the following

conditions.

(i) All non-leaf nodes (except root node) have at least n/2 children and maximum n

children.

(ii) The non-leaf root node may have at least 2 children and maximum n children.

(iii) B-Tree can exist with only one node. i.e. the root node containing no child.

(iv) If a node has n children then it must have n-1 values.

(v) All the values that appear on the left most child of a node are smaller than the

first value of that node. All values that appears on the right most child of a node

are greater that the last values of that node.

(vi) If x and y are any two i
th

 and (i+1)
th

 values of a node, where x < y, then all the

values appearing on the (i+1)
th

 sub-tree of that node are greater than x and less

than y.

(vii) All the leaf nodes should appear on the same level. All the nodes except root

node should have minimum n/2 values.

Consider the following tree. Clearly, it is a m-way search tree of order 3. Let us

check whether the above conditions are satisfied. It can be seen that root node has 3

children and therefore has only 2 values stored in it. Also it is seen that the elements in

the first child (3, 17) are lesser than the value of the first element (23) of the root node.

The value of the elements in the second child (31) is greater than the value of the first

element of the root node (23) and less than the value of the second element (39) in the

root node. The value of the elements in the rightmost child (43, 65) is greater than the

value of the rightmost element in the root node. All the three leaf nodes are at the same

level (level 2). Hence all the conditions specified above is found to be satisfied by the

given m-way search tree. Therefore it is a B-Tee.

Page 12 of 29

Search Operation in a B-Tree

 Let us say the number to be searched is k = 64. A temporary pointer temp is

made to initially point to the root node. The value k = 64 is now compared with each

element in the node pointed by temp. If the value is found then the address of the node

where it is found is returned using the temp pointer. If the value k is greater than i
th

element of the node, then the temp is moved to the i+1
th

 node and the search process is

repeated. If the k value is lesser than the first value in the node, then the temp is moved

to the first child. If the k value is greater than the last value of the node, then temp is

moved to the rightmost child of the node and the search process is repeated.

 After the particular node where the value is found is located (now pointed by

temp), then a variable LOC is initialized to 0, indicating the position of the value to be

searched within that node. The value k is compared with each and every element of the

node. When the value of the k is found within the node, then the search comes to an end

position where it is found is stored in LOC. If not found the value of LOC is zero

indicating that the value is not found.

Algorithm

SEARCH(ROOT, k)

Temp = ROOT, i = 1, pos = 0

While i ≤ count(temp) and child[i](temp) ≠ NULL

 If k = info(temp[i])

 Pos = i

 Return temp

 Else

 If k < info(temp[i])

 SEARCH(child[i](temp), k)

 Else

 If i = count(temp)

 Par = temp

 Temp = child[i+1](temp)

 Else

 i = i + 1

 End if

 End if

 End if

Page 13 of 29

End While

While i ≤ count(temp)

 If k = info(temp[i])

 Pos = i

 Return temp

 End if

End while

End SEARCH

Insert Operation in a B-Tree

 One of the conditions in the B-Tree is that, the maximum number of values that

can be present in the node of a tree is n – 1, where n is the order of the tree. Hence, it

should be taken care that, even after insertion, this condition is satisfied. There are two

cases: In the first case, the element is inserted into a node which already had less than

n- 1 values, and the in the second case, the element is inserted into a node which already

had exactly n-1 values. The first case is a simple one. The insertion into the node does

not violate any condition of the tree. But in the second case, if the insertion is done, then

after insertion, the number values exceeds the limit in that node.

 Let us take the first case. In both the cases, the insertion is done by searching for

that element in the tree which will give the node where it is to be inserted. While

searching, if the value is already found, then no insertion is done as B-Tree is used for

storing the key values and keys do not have duplicates. Now the value given is inserted

into the node. Consider the figure which shows how value 37 is inserted into correct

place.

In the second case, insertion is done as explained above. But now, it is found that,

the number of values in the node after insertion exceeds the maximum limit. Consider

Page 14 of 29

the same tree shown above. Let us insert a value 19 into it. After insertion of the value

19, the number of values (2, 13, 19, 22) in that node has become 4. But it is a B-Tree of

order 4 in which there should be only maximum 3 values per node. Hence the node is

split into two nodes, the first node containing the numbers starting from the first value to

the value just before the middle value (first node: 2). The second node will contain the

numbers starting just after the mid value till the last value (second node: 19, 22). The

mid value 13 is pushed into the parent. Now the adjusted B-Tree appears as shown.

Algorithm

INSERT(ROOT, k)

Temp = SEARCH(ROOT, k)

If count(temp) < n-1

 Ins(temp, k)

 Return

Else

 Repeat for i = n/2 +1 to n-1

 Info(R[i-n/2]) = info(temp[i])

 Count(R) = count(R) + 1

 End repeat

 Count(temp) = n/2 – 1

 Ins(par, info(temp[m/2])

End if

INSERT(ROOT, k)

End INSERT

Delete Operation in B-Tree

 When the delete operation is performed, we should take care that even after

deletion, the node has minimum n/2 value in it, where n is the order of the tree.

 There are three cases:

Case 1: The node from which the value is deleted has minimum n/2 values even after

deletion. Let us consider the following B-Tree of order 5. A value 64 is to be deleted.

Even after the deletion of the value 64, the node has minimum n/2 values (i.e., 2 values).

Hence the rules of the B-Tree are not violated.

Page 15 of 29

Case 2: In the second case, after the deletion the node has less than minimum n/2 values.

Let us say we delete 92 from the tree. After 92 is deleted, the node has only one value

83. But a node adjacent to it consist 3 values (i.e., there are extra values in the adjacent

node). Then the last value in that node 71 is pushed to its parent and the first value in the

parent namely 79 is pushed into the node which has values less than minimum limit.

Now the node has obtained the minimum required values.

Page 16 of 29

Case 3: In the previous case, there was an adjacent node with extra elements and hence

the adjustment was made easily. But if all the nodes have exactly the minimum required,

and if now a value is deleted from a node in this, then no value can be borrowed from any

of the adjacent nodes. Hence as before a value from the parent is pushed into the node

(in this case 32 is pushed down). Then the nodes are merged together. But we see that

the parent node has insufficient number of values. Hence same process of merging takes

place recursively till the entire tree is adjusted.

Page 17 of 29

Algorithm

DELETE(ROOT, K)

Temp = SEARCH(ROOT, k), DELETED = 0, i = 1

While i < = count(temp)

 If (k = info(temp[i])

 DELETED = 1

 Delete temp[i]

 End if

End while

If DELETED = 0

 Print “Item not found”

 Return

Else

 If count(temp) < n / 2

 i = 1

 While i <= count(par)

 If count(child[i](par)) > n/2

 s = child[i](par)

 break

 Else

 i = i + 1

 End if

 End while

 If info(temp[1]) > info(s[count(s)])

 Ins(temp, info(par[1]))

 Ins(par, info(s[count(s)]))

 Else

 Ins(temp, info(par[count(par)]))

 Ins(par, info(s[1]))

 End if

 End if

End if

End DELETE

Splay trees

Page 18 of 29

A splay tree is a self-adjusting binary search tree with the additional property that

recently accessed elements are quick to access again. It performs basic operations such as

insertion, look-up and removal in O(log n) time.

Tree Splaying

All normal operations on a binary search tree are combined with one basic operation,

called splaying. Splaying the tree for a certain element rearranges the tree so that the

element is placed at the root of the tree. One way to do this is to first perform a standard

binary tree search for the element in question, and then use tree rotations in a specific

fashion to bring the element to the top.

Advantages:

Good performance for a splay tree depends on the fact that it is self-optimizing, in that

frequently accessed nodes will move nearer to the root where they can be accessed more

quickly.

Tree rotations

To bring the recently accessed node closer to the tree root, a splay tree uses tree rotations.

There are six types of tree rotations, three of which are symmetric to the other three.

These are as follows:

• Left and right rotations

• Zig-zig left-left and zig-zig right-right rotations

• Zig-zag left-right and zig-zag right-left rotations

The first type of rotations, either left or right, is always a terminal rotation. In other

words, the splaying is complete when we finish a left or right rotation.

Deciding which rotation to use

The decision to choose one of the above rotations depends on three things:

• Does the node we are trying to rotate have a grand-parent?

• Is the node left or right child of the parent?

• Is the parent left or right child of the grand-parent?

If the node does not have a grand-parent, we carry out a left rotation if it is the right child

of the parent; otherwise, we carry out a right rotation.

If the node has a grand-parent, we have four cases to choose from:

If node is left of parent and parent is left of grand-parent, we do a zig-zig right-

right rotation.

If node is left of parent but parent is right of grand-parent, we do a zig-zag right-

left rotation.

If node is right of parent and parent is right of grand-parent, we do a zig-zig left-

left rotation.

Finally, if node is right of parent but parent is left or grand-parent, we do a zig-zag left-

right rotation.

The actual rotations are described in the following sections.

Left and right rotations

The following shows the intermediate steps in understanding a right rotation. The left

rotation is symmetric to this.

Page 19 of 29

As we can see, each of the left or right rotations requires five pointer updates:

if (current == parent->left) {

 /* right rotate */

 parent->left = current->right;

 if (current->right)

 current->right->parent = parent;

 parent->parent = current;

 current->right = parent;

} else {

 /* left rotate */

 parent->right = current->left;

 if (current->left)

 current->left->parent = parent;

 parent->parent = current;

 current->left = parent;

}

current->parent = 0;

Page 20 of 29

Zig-zig right-right and left-left rotations

The following shows the intermediate steps in understanding a zig-zig right-right

rotation. The zig-zig left-left rotation is symmetric to this. Note in the following that with

zig-zig rotations, we first do a right or left rotation on the parent, before doing a right or

left rotation on the node.

Page 21 of 29

As we can see, zig-zig right-right rotation requires nine pointer updates.

/* zig-zig right-right rotations */

if (current->right)

 current->right->parent = parent;

if (parent->right)

 parent->right->parent = grandParent;

current->parent = grandParent->parent;

grandParent->parent = parent;

parent->parent = current;

grandParent->left = parent->right;

parent->right = grandParent;

parent->left = current->right;

current->right = parent;

The same number of pointer updates for zig-zig left-left rotation.

/* zig-zig left-left rotations */

if (current->left)

 current->left->parent = parent;

if (parent->left)

 parent->left->parent = grandParent;

current->parent = grandParent->parent;

grandParent->parent = parent;

parent->parent = current;

grandParent->right = parent->left;

parent->left = grandParent;

parent->right = current->left;

current->left = parent;

Zig-zag left-right and right-left rotations

The following shows the intermediate steps in understanding a zig-zag left-right rotation.

The zig-zag right-left rotation is symmetric to this. Note in the following that with zig-

zag rotations, we do both rotations on the node, in contrast to zig-zig rotations.

Page 22 of 29

As we can see, zig-zag left-right rotation requires nine pointer updates.

/* zig-zag right-left rotations */

if (current->left)

Page 23 of 29

 current->left->parent = grandParent;

if (current->right)

 current->right->parent = parent;

current->parent = grandParent->parent;

grandParent->parent = current;

parent->parent = current;

grandParent->right = current->left;

parent->left = current->right;

current->right = parent;

current->left = grandParent;

The same number of pointer updates for zig-zag right-left rotation.

/* zig-zag left-right rotations */

if (current->left)

 current->left->parent = parent;

if (current->right)

 current->right->parent = grandParent;

current->parent = grandParent->parent;

grandParent->parent = current;

parent->parent = current;

grandParent->left = current->right;

parent->right = current->left;

current->left = parent;

current->right = grandParent;

Heap Trees

Heap is a special case of balanced binary tree data structure where root-node value is

compared with its children and arranged accordingly. Heap trees are of two types- Max

heap and Min heap.

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − where the value of root node is less than or equal to either of its children.

Page 24 of 29

Max-Heap − where the value of root node is greater than or equal to either of its

children.

If a given node is in position I then the position of the left child and the right child can be

calculated using Left (L) = 2I and Right (R) = 2I + 1. To check whether the right child

exists or not, use the condition R ≤ N. If true, Right child exists otherwise not.The last

node of the tree is N/2. After this position tree has only leaves.

Procedure HEAPIFY(A,N)

// A is the list of elements

//N is the number of elements

For (I = N/2 to 1)

 WALKDOWN (A,I,N)

END FOR

End Procedure

Procedure WALKDOWN(A, I,N)
//A is the list of unsorted elements

//N is the number of elements in the array

//I is the position of the node where the walkdown procedure is to be applied.

While I ≤ N/2

 L � 2I, R � 2I + 1

If A[L] > A[I] Then

M � L

Else

Page 25 of 29

M � I

End If

If A[R] > A[M] and R ≤ N Then

 M � R

End If

If M ≠ I Then

 A[I] ↔ A[M]

 I �M

Else

 Return

End If

End While

End WALKDOWN

Example:

Given a list A with 8 elements:

35 38 10 14 43 16 3

The given list is first converted into a binary tree as shown.

Then they are heapified , starting from the lowest parent.

Page 26 of 29

The obtained tree is a Max heap tree.

Page 27 of 29

TRIES

-Also called digital tree or radix tree or prefix tree.

-Tries are an excellent data structure for strings.

-Tries is a tree data structure used for storing collections of strings.

-Tries came from the word retrieval.

-Nodes store associative keys (strings) and values.

Tries Structure

Let us consider the case of a tries tree of order 3.Let the key value in this tries is

constituted from three letters namely a, b and c. Each node has the following structure:

// Trie node

struct TrieNode

{

 struct TrieNode *children[ALPHABET_SIZE];

 // isLeaf is true if the node represents

 // end of a word

 bool isLeaf;

};

Here 3 link fields’ points to three nodes in the next level and the last field are called the

information field. The information field has the value either TRUE or FALSE. If the

value is TRUE then traversing from the root node to this node yields some information. A

tries of order 3 is given below:

Page 28 of 29

For example, let us assume the key value ‘bab’. Starting from the root node, and

branching based on each letter, traversal will be 0-2-7-14 and in node 14, the information

field TRUE implies that ‘bab’ is a word.

NOTE:

� Tries indexing is suitable for maintaining variable sized key values.

� Actual key value is never stored but key values are implied through links.

� If English alphabets are used, then a trie of order 26 can maintain whole English

dictionary.

Operations on Trie

Searching

Searching for a key begins at the root node, compare the characters and move down. The

search can terminate due to end of string or lack of key in tries. In the former case, if the

value field of last node is non-zero then the key exists in tries. In the second case, the

search terminates without examining all the characters of key, since the key is not present

in trie.

PSEUDOCODE. The search algorithm involves the following steps:

 1. For each character in the string, see if there is a child node with that character as the

content.

Page 29 of 29

2. If that character does not exist, return false.

3. If that character exist, repeat step 1.

4. Do the above steps until the end of string is reached.

5. When end of string is reached and if the marker (NotLeaf) of the current Node is set

to false, return true, else return false.

Insertion

Inserting a key into trie is simple approach. Every character of input key is inserted as an

individual trie node. Note that the children are an array of pointers to next level trie

nodes. The key character acts as an index into the array children. If the input key is new

or an extension of existing key, we need to construct non-existing nodes of the key, and

mark leaf node. If the input key is prefix of existing key in trie, we simply mark the last

node of key as leaf. The key length determines trie depth.

PSEUDOCODE: Any insertion would ideally be following the below algorithm:

1. Find the place of the item by following bits.

2. If there is nothing, just insert the item there as a leaf node.

3. If there is something on the leaf node, it becomes a new internal node. Build a

new sub tree to that inner node depending how the item to be inserted and the

item that was in the leaf node differs.

4. Create new leaf nodes where you store the item that was to be inserted and the

item that was originally in the leaf node.

Deletion

Deletion procedure is same as searching and insertion with some modification. To delete

a key from a trie, trace down the path corresponding to the key to be deleted, and when

we reach the appropriate node, set the TAG field of this node as FALSE. If all the field

entries of this node are NULL, then return this node to the pool of free storage. To do so,

maintain a stack of PATH to store all the pointers of nodes on the path from the root to

the last node reached.

Application of Tries

• Retrieval operation of lexicographic words in a dictionary.

• Word processing packages to support the spelling check.

• Useful for storing a predictive text for auto complete.

GRAPHS

UNIT IV: Graph Theory Terminology, Graph Representations, Graph operations- Graph

Traversals (BFS & DFS), Connected components, Spanning Trees, Biconnected Components,

Minimum Spanning Trees- Krushkal’s Algorithm , Prim’s Algorithm, Shortest paths, Transitive

closure, All pairs Shortest path-Marshall’s Algorithm.

BASIC CONCEPTS

A graph is an abstract data structure that is used to implement the mathematical concept

of graphs. It is basically a collection of vertices (also called nodes) and edges that connect

these vertices. A graph is often viewed as a generalization of the tree structure, where instead

of having a purely parent-to-child relationship between tree nodes, any kind of complex

relationship can exist.

WHY GRAPHS ARE USEFUL

Graphs are widely used to model any situation where entities or things are related to each other

in pairs. For example, the following information can be represented by graphs:

 Family trees: in which the member nodes have an edge from parent to each of their

children.

 Transportation networks: in which nodes are airports, intersections, ports, etc. The edges

can be airline flights, one-way roads, shipping routes, etc.

Definition

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices

and E(G) represents the edges that connect these vertices.

A graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D),

(D, E), (C, E)}. Note that there are five vertices or nodes and six edges in the graph.

A graph can be directed or undirected. In an undirected graph, edges do not have any

direction associated with them. That is, if an edge is drawn between nodes A and B, then the

nodes can be traversed from A to B as well as from B to A.

www.Jntufastupdates.com 1

In a directed graph, edges form an ordered pair. If there is an edge from A to B, then

there is a path from A to B but not from B to A. The edge (A, B) is said to initiate from node A

(also known as initial node) and terminate at nodeB (terminalnode).

Directed Graph

Graph Terminology

Adjacent nodes or neighbours

 For every edge, e = (u, v) that connects nodes u and v, the nodes u and v are the end-points and

are said to be the adjacent nodes or neighbours.

Degree of a node

 Degree of a node u, deg(u), is the total number of edges containing the node u. If

deg(u) = 0, it means that u does not belong to any edge and such a node is known

as an isolated node.

Regular graph

It is a graph where each vertex has the same number of neighbours. That is, every node has the

same degree. A regular graph with vertices of degree k is called a k–regular graph or a regular

graph of degree k.

Path

A path P written as P = {v0 , v1 , v2 , ..., vn), of length n from a node u to v is defined as a

sequence of (n+1) nodes. Here, u = v0 , v = vn and vi–1 is adjacent to vi for i = 1, 2, 3, ..., n.

Closed path

A path P is known as a closed path if the edge has the same end-points. That is, if v0 = vn .

Simple path

 A path P is known as a simple path if all the nodes in the path are distinct with an exception

that v0 may be equal to vn . If v0 = vn , then the path is called a closed simple path.

Cycle

 A path in which the first and the last vertices are same. A simple cycle has no repeated edges or

vertices (except the first and last vertices).

Connected graph

A graph is said to be connected if for any two vertices (u, v) in V there is a path from u to v.

That is to say that there are no isolated nodes in a connected graph. A connected graph that does

not have any cycle is called a tree. Therefore, a tree is treated as a special graph

www.Jntufastupdates.com 2

Complete graph A graph G is said to be complete if all its nodes are fully connected. That is,

there is a path from one node to every other node in the graph. A complete graph has n(n–1)/2

edges, where n is the number of nodes in G

Labelled graph or weighted graph

 A graph is said to be labelled if every edge in the graph is assigned some data. In a weighted

graph, the edges of the graph are assigned some weight or length. The weight of an edge

denoted by w(e) is a positive value which indicates the cost of traversing the edge.

 Multiple edges Distinct edges which connect the same end-points are called multiple edges.

That is, e = (u, v) and e' = (u, v) are known as multiple edges of G.

 Loop An edge that has identical end-points is called a loop. That is, e = (u, u).

 Multi-graph A graph with multiple edges and/or loops is called a multi-graph.

Size of a graph The size of a graph is the total number of edges in i

Directed Graphs

A directed graph G, also known as a digraph, is a graph in which every edge has a direction

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For

an edge (u, v),

 The edge begins at u and terminates at v.

 u is known as the origin or initial point of e.Correspondingly, v is known as the

destination or terminal point of e.

 u is the predecessor of v. Correspondingly, v is the successor of u. ∑ Nodes u and v are

adjacent to each other

Terminology of a Directed Graph

Out-degree of a node The out-degree of a node u, written as outdeg(u), is the number of

edges that originate at u.

In-degree of a node The in-degree of a node u, written as indeg(u), is the number of

edges that terminate at u.

Degree of a node The degree of a node, written as deg(u), is equal to the sum of in-

degree and out-degree of that node. Therefore, deg(u) = indeg(u) + outdeg(u).

www.Jntufastupdates.com 3

Isolated vertex A vertex with degree zero. Such a vertex is not an end-point of any

edge.

Pendant vertex (also known as leaf vertex) A vertex with degree one.

Cut vertex A vertex which when deleted would disconnect the remaining graph.

Source A node u is known as a source if it has a positive out-degree but a zero in-

degree.

Sink A node u is known as a sink if it has a positive in-degree but a zero out-degree.

Reachability A node v is said to be reachable from node u, if and only if there exists a

(directed) path from node u to node v. For example, if you consider the directed graph

given in Fig. 13.5(a), you will observe that node D is reachable from node A.

Strongly connected directed graph A digraph is said to be strongly connected if and

only if there exists a path between every pair of nodes in G. That is, if there is a path

from node u to v, then there must be a path from node v to u.

Weakly connected digraph A directed graph is said to be weakly connected if it is

connected by ignoring the direction of edges. That is, in such a graph, it is possible to

reach any node from any other node by traversing edges in any direction (may not be in

the direction they point). The nodes in a weakly connected directed graph must have

either out-degree or in-degree of at least 1.

 Parallel/Multiple edges Distinct edges which connect the same end-points are called

multiple edges. That is, e = (u, v) and e' = (u, v) are known as multiple edges of G. In

below diagram e3 and e5 are multiple edges connecting nodes C and D.

Simple directed graph A directed graph G is said to be a simple directed graph if and only if it

has no parallel edges. However, a simple directed graph may contain cycles with an exception

that it cannot have more than one loop at a given node.

REPRESENTATION OF GRAPHS
There are three common ways of storing graphs in the computer’s memory.

1. Adjacency Matrix

2. Adjacency List

www.Jntufastupdates.com 4

Adjacency Matrix Representation

In this representation, the graph is represented using a matrix of size total number of

vertices by a total number of vertices. That means a graph with 4 vertices is represented using a

matrix of size 4X4. In this matrix, both rows and columns represent vertices. This matrix is

filled with either 1 or 0. Here, 1 represents that there is an edge from row vertex to column

vertex and 0 represents that there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation...

Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix.

The entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the

order of nodes will result in a different adjacency matrix.

Directed graph representation...

Graphs and their corresponding adjacency matrices

www.Jntufastupdates.com 5

From the above examples, we can draw the following conclusions:

1. For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal.

2. The adjacency matrix of an undirected graph is symmetric.

3. The memory use of an adjacency matrix is O(n2), where n is the number of nodes in

the graph.

4. Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of

edges in the graph.

5. The adjacency matrix for a weighted graph contains the weights of the edges connecting

the nodes.

Adjacency List
In this representation, every vertex of a graph contains list of its adjacent vertices.

For example, consider the following directed graph representation implemented using linked

list...

This representation can also be implemented using an array as follows..

www.Jntufastupdates.com 6

The key advantages of using an adjacency list are:

1 It is easy to follow and clearly shows the adjacent nodes of a particular node.

2. It is often used for storing graphs that have a small-to-moderate number of edges. That is, an

adjacency list is preferred for representing sparse graphs in the computer’s memory; otherwise,

an adjacency matrix is a good choice.

3. Adding new nodes in G is easy and straightforward when G is represented using an adjacency

list. Adding new nodes in an adjacency matrix is a difficult task, as the size of the matrix needs

to be changed and existing nodes may have to be reordered.

4. For a directed graph, the sum of the lengths of all adjacency lists is equal to the number of

edges in G.

5. For an undirected graph, the sum of the lengths of all adjacency lists is equal to twice the

number of edges in G because an edge (u, v) means an edge from node u to v as well as an edge

from v to u.

Graph Traversal

Graph traversal is a technique used for a searching vertex in a graph. The graph traversal is also
used to decide the order of vertices is visited in the search process. A graph traversal finds the

edges to be used in the search process without creating loops. That means using graph traversal

we visit all the vertices of the graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

Breadth First Search (BFS) Algorithm

Breadth first search is a graph traversal algorithm that starts traversing the graph from

root node and explores all the neighboring nodes. Then, it selects the nearest node and explore

all the unexplored nodes. The algorithm follows the same process for each of the nearest node

until it finds the goal.

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a

graph without loops. We use Queue data structure with maximum size of total number of

vertices in the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

 Step 1 - Define a Queue of size total number of vertices in the graph.

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue.

 Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the

Queue and insert them into the Queue.

 Step 4 - When there is no new vertex to be visited from the vertex which is at front of

the Queue then delete that vertex.

 Step 5 - Repeat steps 3 and 4 until queue becomes empty.

 Step 6 - When queue becomes empty, then produce final spanning tree by removing

unused edges from the graph

www.Jntufastupdates.com 7

www.Jntufastupdates.com 8

Example 2:

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a

queue.

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

www.Jntufastupdates.com 9

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep

on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is

over.

Example

Consider the graph G shown in the following image, calculate the minimum path p from node A

to node E. Given that each edge has a length of 1.

Solution:

Minimum Path P can be found by applying breadth first search algorithm that will begin at node

A and will end at E. the algorithm uses two queues,

namely QUEUE1 and QUEUE2. QUEUE1 holds all the nodes that are to be processed

while QUEUE2 holds all the nodes that are processed and deleted from QUEUE1.

Lets start examining the graph from Node A.

1. Add A to QUEUE1 and NULL to QUEUE2.

QUEUE1 = {A}

QUEUE2 = {NULL}

www.Jntufastupdates.com 10

2. Delete the Node A from QUEUE1 and insert all its neighbours. Insert Node A into QUEUE2

QUEUE1 = {B, D}

QUEUE2 = {A}

3. Delete the node B from QUEUE1 and insert all its neighbours. Insert node B into QUEUE2.

QUEUE1 = {D, C, F}

QUEUE2 = {A, B}

4. Delete the node D from QUEUE1 and insert all its neighbours. Since F is the only neighbour
of it which has been inserted, we will not insert it again. Insert node D into QUEUE2.

QUEUE1 = {C, F}

QUEUE2 = { A, B, D}

5. Delete the node C from QUEUE1 and insert all its neighbours. Add node C to QUEUE2.

QUEUE1 = {F, E, G}

QUEUE2 = {A, B, D, C}

6. Remove F from QUEUE1 and add all its neighbours. Since all of its neighbours has already

been added, we will not add them again. Add node F to QUEUE2.

QUEUE1 = {E, G}

QUEUE2 = {A, B, D, C, F}

7. Remove E from QUEUE1, all of E's neighbours has already been added to QUEUE1

therefore we will not add them again. All the nodes are visited and the target node i.e. E is

encountered into QUEUE2.

QUEUE1 = {G}

QUEUE2 = {A, B, D, C, F, E}

Applications of BFS Algorithm

Some of the real-life applications where a BFS algorithm implementation can be highly

effective.

 Un-weighted Graphs: BFS algorithm can easily create the shortest path and a minimum

spanning tree to visit all the vertices of the graph in the shortest time possible with high

accuracy.

 P2P Networks: BFS can be implemented to locate all the nearest or neighboring nodes

in a peer to peer network. This will find the required data faster.

 Web Crawlers: Search engines or web crawlers can easily build multiple levels of

indexes by employing BFS. BFS implementation starts from the source, which is the

web page, and then it visits all the links from that source.

 Navigation Systems: BFS can help find all the neighboring locations from the main or

source location.

 Network Broadcasting: A broadcasted packet is guided by the BFS algorithm to find

and reach all the nodes it has the address for.

www.Jntufastupdates.com 11

DFS (Depth First Search)
DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph

without loops. We use Stack data structure with maximum size of total number of vertices in

the graph to implement DFS traversal

we use the following steps to implement DFS traversal...

 Step 1 - Define a Stack of size total number of vertices in the graph.

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on

to the Stack.

 Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top

of stack and push it on to the stack.

 Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is

at the top of the stack.

 Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex

from the stack.

 Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

 Step 7 - When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

Back tracking is coming back to the vertex from which we reached the current

vertex.

www.Jntufastupdates.com 12

www.Jntufastupdates.com 13

www.Jntufastupdates.com 14

Applications of Depth-First Search Algorithm

Depth-first search is useful for:

1. Finding a path between two specified nodes, u and v, of an unweighted graph.

2. Finding a path between two specified nodes, u and v, of a weighted graph.

3. Finding whether a graph is connected or not.

4. Computing the spanning tree of a connected graph.

SHORTEST PATH ALGORITHMS

Three different algorithms to calculate the shortest path between the vertices of a graph G.

These algorithms include:

1. Minimum spanning tree

2. Dijkstra’s algorithm

3. Warshall’s algorithm

While the first two use an adjacency list to find the shortest path, Warshall’s algorithm uses an

adjacency matrix to do the same.

Minimum Spanning Trees

A spanning tree is a subset of Graph G, which has all the vertices covered with

minimum possible number of edges. Hence, a spanning tree does not have cycles and it cannot

be disconnected..

 Every connected and undirected Graph G has at least one spanning tree. A disconnected graph

does not have any spanning tree, as it cannot be spanned to all its vertices.

We found three spanning trees off one complete graph. A complete undirected graph can have

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above

addressed example, n is 3, hence 33−2 = 3 spanning

trees are possible.

www.Jntufastupdates.com 15

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a

few properties of the spanning tree connected to graph G −

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the

spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree

is maximally acyclic.

Application of Spanning Tree:

Spanning tree is basically used to find a minimum path to connect all nodes in a graph.

Common application of spanning trees is −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum

weight than all other spanning trees of the same graph. In real-world situations, this weight can

be measured as distance, congestion, traffic load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm

 Kruskal's Algorithm

 Prim's Algorithm

Both are greedy algorithms.

www.Jntufastupdates.com 16

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm

Kruskal’s Minimum Spanning Tree Algorithm

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This

algorithm treats the graph as a forest and every node it has as an individual tree. A tree

connects to another only and only if, it has the least cost among all available options and does

not violate MST properties.

To understand Kruskal's algorithm let us consider the following example −

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all others.

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending order of

weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight.

Throughout, we shall keep checking that the spanning properties remain intact. In case, by

adding one edge, the spanning tree property does not hold then we shall consider not to include

the edge in the graph.

www.Jntufastupdates.com 17

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not
violate spanning tree properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. −

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available 7

and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum

cost spanning tree

Construct the minimum spanning tree (MST) for the given graph using

Kruskal’s Algorithm-

www.Jntufastupdates.com 18

Solution-

To construct MST using Kruskal’s Algorithm,

 Simply draw all the vertices on the paper.

 Connect these vertices using edges with minimum weights such that no cycle gets formed.

Step-01:

Step-02:

Step-03:

Step-04:

Step-05:

www.Jntufastupdates.com 19

Step-06:

Step-07:

Since all the vertices have been connected / included in the MST, so we stop.

Weight of the MST

= Sum of all edge weights

= 10 + 25 + 22 + 12 + 16 + 14

= 99 units

Example

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be

having (9 – 1) = 8 edges.

After sorting:

Weight Src Dest

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

www.Jntufastupdates.com 20

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges

1. Pick edge 7-6: No cycle is formed, include it.

2.Pick edge 8-2: No cycle is formed, include it.

3.Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.

5.Pick edge 2-5: No cycle is formed, include it.

www.Jntufastupdates.com 21

6.Pick edge 8-6: Since including this edge results in the cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in the cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in the cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the algorithm stops here.

Prim’s Algorithm-

 Prim’s Algorithm is a famous greedy algorithm.

 It is used for finding the Minimum Spanning Tree (MST) of a given graph.

 To apply Prim’s algorithm, the given graph must be weighted, connected and undirected.

Prim’s Algorithm Implementation-

 The implementation of Prim’s Algorithm is explained in the following steps-

Step-01:

 Randomly choose any vertex.

 The vertex connecting to the edge having least weight is usually selected.

 Step-02:

 Find all the edges that connect the tree to new vertices.

 Find the least weight edge among those edges and include it in the existing tree.

 If including that edge creates a cycle, then reject that edge and look for the next least

weight edge.

 Step-03:

 Keep repeating step-02 until all the vertices are included and Minimum Spanning Tree

(MST) is obtained.

www.Jntufastupdates.com 22

 Problem-01:

 Construct the minimum spanning tree (MST) for the given graph using Prim’s Algorithm-

Solution-

 The above discussed steps are followed to find the minimum cost spanning tree using Prim’s

Algorithm-

 Step-01:

Step-02: Step-03:

Step-04: Step-05:

Step-06:

www.Jntufastupdates.com 23

 Since all the vertices have been included in the MST, so we stop.

 Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 10 + 25 + 22 + 12 + 16 + 14

= 99 units

Example 2

 Using Prim’s Algorithm, find the cost of minimum spanning tree (MST) of the given graph-

Solution-

 The minimum spanning tree obtained by the application of Prim’s Algorithm on the given

graph is as shown below-

Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 1 + 4 + 2 + 6 + 3 + 10

= 26 units

Example:

Step 1 - Remove all loops and parallel edges

www.Jntufastupdates.com 24

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the
one which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

 In this case, we choose S node as the root node of Prim's spanning tree. This

node is arbitrarily chosen, so any node can be the root node, in the spanning tree all the nodes of

a graph are included and because it is connected then there must be at least one edge, which will

join it to the rest of the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,

respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the

new edge, which is less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it having the

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included.

www.Jntufastupdates.com 25

We may find that the output spanning tree of the same graph using two different algorithms is

same.

Comparison between Prim’s and Krushkals

1. If all the edge weights are distinct, then both the algorithms are guaranteed to find the

same MST.

Example-

Consider the following example-

Here, both the algorithms on the above given graph produces the same MST as shown.

2. If all the edge weights are not distinct, then both the algorithms may not always produce the

same MST.

 However, cost of both the MSTs would always be same in both the cases.

Example-

 Consider the following example-

www.Jntufastupdates.com 26

3. Kruskal’s Algorithm is preferred when-

• The graph is sparse.

• There are less number of edges in the graph like E = O(V)

• The edges are already sorted or can be sorted in linear time.

Prim’s Algorithm is preferred when-

• The graph is dense.

 • There are large number of edges in the graph like E = O(V2).

4. Difference between Prim’s Algorithm and Kruskal’s Algorithm-

Prim’s Algorithm Kruskal’s Algorithm

The tree that we are making or growing

always remains connected.

The tree that we are making or growing

usually remains disconnected.

Prim’s Algorithm grows a solution from a
random vertex by adding the next cheapest

vertex to the existing tree.

Kruskal’s Algorithm grows a solution
from the cheapest edge by adding the next

cheapest edge to the existing tree / forest.

Prim’s Algorithm is faster for dense

graphs.

Kruskal’s Algorithm is faster for sparse

graphs.

Definition

This algorithm was created and published by Dr. Edsger W. Dijkstra, a brilliant Dutch

computer scientist and software engineer.

The Dijkstra’s algorithm finds the shortest path from a particular node, called the source

node to every other node in a connected graph. It produces a shortest path tree with the source

node as the root. It is profoundly used in computer networks to generate optimal routes with the

aim of minimizing routing costs.

Basics of Dijkstra's Algorithm

 Dijkstra's Algorithm basically starts at the node that you choose (the source node) and it analyzes the

graph to find the shortest path between that node and all the other nodes in the graph.

 The algorithm keeps track of the currently known shortest distance from each node to the source node

and it updates these values if it finds a shorter path.

 Once the algorithm has found the shortest path between the source node and another node, that node is

marked as "visited" and added to the path.

 The process continues until all the nodes in the graph have been added to the path. This way, we have a

path that connects the source node to all other nodes following the shortest path possible to reach each

node.

www.Jntufastupdates.com 27

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Dijkstra’s Algorithm

Input − A graph representing the network; and a source node, s

Output − A shortest path tree, spt[], with s as the root node.

1. Select the source node also called the initial node

 2. Define an empty set N that will be used to hold nodes to which a shortest path has been

found.

 3. Label the initial node with , and insert it into N.

4. Repeat Steps 5 to 7 until the destination node is inNor there are no more labelled nodes in N.

5. Consider each node that is not in N and is connected by an edge from the newly inserted

node.

 6. (a) If the node that is not in N has no label then SET the label of the node = the label of the

newly inserted node + the length of the edge.

(b) Else if the node that is not in N was already labelled, then SET its new label = minimum

(label of newly inserted vertex + length of edge, old label)

7. Pick a node not in N that has the smallest label assigned to it and add it to N.

Example

The initializations will be as follows −

 dist[7]={0,∞,∞,∞,∞,∞,∞}

 Q={A,B,C,D,E,F,G}

 S𝑆= ∅

Pass 1 − We choose node A from Q since it has the lowest dist[] value of 0 and put it in S. The

neighbouring nodes of A are B and C. We update dist[] values corresponding to B and C

according to the algorithm. So the values of the data structures become −

 dist[7]={0,5,6,∞,∞,∞,∞}

 Q={B,C,D,E,F,G}

 S={A}

The distances and shortest paths after this pass are shown in the following graph. The green

node denotes the node already added to S −

www.Jntufastupdates.com 28

Pass 2 − We choose node B from Q since it has the lowest dist[] value of 5 and put it in S. The

neighbouring nodes of B are C, D and E. We update dist[] values corresponding to C, D and E

according to the algorithm. So the values of the data structures become −

 dist[7]={0,5,6,12,13,∞,∞}

 Q={C,D,E,F,G}

 S={A,B}

The distances and shortest paths after this pass are −

Pass 3 − We choose node C from Q since it has the lowest dist[] value of 6 and put it in S. The

neighbouring nodes of C are D and F. We update dist[] values corresponding to D and F. So the

values of the data structures become −

 dist[7]={0,5,6,8,13,10,∞}

 Q={D,E,F,G}

 S={A,B,C}

The distances and shortest paths after this pass are –

www.Jntufastupdates.com 29

Pass 4 − We choose node D from Q since it has the lowest dist[] value of 8 and put it in S. The
neighbouring nodes of D are E, F and G. We update dist[] values corresponding to E, F and G.

So the values of the data structures become −

 dist[7]={0,5,6,8,10,10,18}

 Q={E,F,G}

 S={A,B,C,D}

The distances and shortest paths after this pass are –

Pass 5 − We can choose either node E or node F from Q since both of them have the

lowest dist[] value of 10. We select any one of them, say E, and put it in S. The neighbouring

nodes of D is G. We update dist[] values corresponding to G. So the values of the data

structures become −

 dist[7]={0,5,6,8,10,10,13}

 Q={F,G}

 S={A,B,C,D,E}

The distances and shortest paths after this pass are –

Pass 6 − We choose node F from Q since it has the lowest dist[] value of 10 and put it in S. The

neighbouring nodes of F is G. The dist[] value corresponding to G is less than that through F.

So it remains same. The values of the data structures become −

 dist[7]={0,5,6,8,10,10,13}

 Q={G}

 S={A,B,C,D,E,F}

www.Jntufastupdates.com 30

The distances and shortest paths after this pass are –

Pass 7 − There is just one node in Q. We remove it from Q put it in S. The dist[] array needs no

change. Now, Q becomes empty, S contains all the nodes and so we come to the end of the

algorithm. We eliminate all the edges or routes that are not in the path of any route. So the

shortest path tree from source node A to all other nodes are as follows −

Transitive Closure of a Directed Graph

A transitive closure of a graph is constructed to answer reachability questions

Definition

For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the

transitive closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an

edge (v, w) in E* if and only if there is a valid path from v to w in G.

Where and Why is it Needed? Finding the transitive closure of a directed graph is an

important problem in the following computational tasks

 Transitive closure is used to find the reachability analysis of transition networks

representing distributed and parallel systems.

 It is used in the construction of parsing automata in compiler construction

 Recently, transitive closure computation is being used to evaluate recursive database

queries

Algorithm

 In order to determine the transitive closure of a graph, we define a matrix t where tk ij = 1, for

i, j, k = 1, 2, 3, ... n if there exists a path in G from the vertex i to vertex j with intermediate

www.Jntufastupdates.com 31

vertices in the set (1, 2, 3, ..., k) and 0 otherwise. That is, G* is constructed by adding an edge

(i, j) into E* if and only if tk ij = 1

 Its connectivity matrix C is

0 1 2 3

1 0 1 0

1 1 1 0

0 0 1 0

1 1 1 1

Transitive closure of graphs is

 1 1 1 1

 1 1 1 1

 1 1 1 1

 0 0 0 1

Floyd Warshall Algorithm-

 Floyd Warshall Algorithm is a famous algorithm.

 It is used to solve All Pairs Shortest Path Problem.

 It computes the shortest path between every pair of vertices of the given graph.

 Floyd Warshall Algorithm is an example of dynamic programming approach.

Advantages-

Floyd Warshall Algorithm has the following main advantages-

 It is extremely simple.

 It is easy to implement.

 When Floyd Warshall Algorithm Is Used?

 Floyd Warshall Algorithm is best suited for dense graphs.

 This is because its complexity depends only on the number of vertices in the given graph.

 For sparse graphs, Johnson’s Algorithm is more suitable.

 Path matrix entry

www.Jntufastupdates.com 32

Problem-
Consider the following directed weighted graph-

Using Floyd Warshall Algorithm, find the shortest path distance between every pair of vertices.

Solution-

 Step-01:

 Remove all the self loops and parallel edges (keeping the lowest weight edge) from the

graph.

 In the given graph, there are neither self edges nor parallel edges.

 Step-02:

 Write the initial distance matrix.

 It represents the distance between every pair of vertices in the form of given weights.

 For diagonal elements (representing self-loops), distance value = 0.

 For vertices having a direct edge between them, distance value = weight of that edge.

 For vertices having no direct edge between them, distance value = ∞.

Initial distance matrix for the given graph is-

Step-03: Using Floyd Warshall Algorithm, write the following 4 matrices-

The last matrix D4 represents the shortest path distance between every pair of vertices.

www.Jntufastupdates.com 33

DATA STRUCTURES

1
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V

SEARCHING

DEFINITION

It is a method of finding the given element in the given list of

elements.

or

It is technique to find the location where the element is available

or present.

or

It is an algorithm to check whether a particular element is

present in the given list or not.

Types of Searching

✓ Linear Search

✓ Binary Search

✓ Fibonacci Search

LINEAR SEARCH

✓ It is a very simple search algorithm when compared with the other

two search algorithms.

✓ It is also called as sequential search or indexed search.

✓ To perform linear search, the list of elements need not be sorted.

✓ An ordered or unordered list will be searched by comparing the search

element with one by one element from the beginning of the list until

the desired element is found or till the end of the list.

✓ If the desired element is found in the list then the search is successful

otherwise unsuccessful.

✓ The time complexity for linear search is O(n) where n is the number

of elements in the list.

✓ The time complexity increases with the increase of the input size n.

www.Jntufastupdates.com 1

DATA STRUCTURES

2
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm for Linear Search

LINEAR_SEARCH(A, N, KEY)

Step 1: SET POS = -1

Step 2: SET I = 1

Step 3: Repeat Step 4 while I<=N

Step 4: IF A[I] = KEY

SET POS = I

PRINT POS

Go to Step 6

SET I = I + 1

Step 5: IF POS = –1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

Step 6: EXIT

Example of Linear Search

www.Jntufastupdates.com 2

DATA STRUCTURES

3
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Linear Search

#include<stdio.h>

int main(void)

{

 int a[20], n, i, key;

 printf("Enter size of the list: ");

 scanf("%d", &n);

 printf("Enter the elements”);

 for(i = 0; i < n; i++)

 scanf("%d", &a[i]);

 printf("Enter the element to be Search: ");

 scanf("%d", &key);

www.Jntufastupdates.com 3

DATA STRUCTURES

4
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

for(i = 0; i < n; i++)

 {

 if(key == a[i])

 {

 printf("Element is found at %d index", i);

 break;

 }

 }

 if(i == n)

 printf("Given element is not found in the li st!!!");

 return 0;

}

BINARY SEARCH

✓ It is the fastest searching algorithm when compared with the other

two algorithms.

✓ It works on the principle divide – conquer strategy.

✓ To apply binary search algorithm the list of elements should be in

sorted order.

✓ The time complexity for binary search algorithm is O(log n).

✓ It is applied to very large set of elements

✓ The process carried by binary search algorithm is find the middle

element and compare it with search element it match return the index

of the element and say success otherwise see if the search element is

greater than or less than the middle element.

✓ If it is greater than the middle element then search the element in the

upper part of the list otherwise in the lower part of the list.

✓ Again find middle element and do the same process till the element is

found or not found.

✓ Using binary search algorithm we can reduce the number of

comparisons hence it is best.

www.Jntufastupdates.com 4

DATA STRUCTURES

5
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Algorithm forBinary Search

BINARY_SEARCH(A, lower_bound, upper_bound, KEY)

Step 1: SET BEG = lower_bound

 END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <= END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = KEY

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

ELSE

SET BEG = MID + 1

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

Step 6: EXIT

Example of Binary Search

www.Jntufastupdates.com 5

DATA STRUCTURES

6
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

www.Jntufastupdates.com 6

DATA STRUCTURES

7
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Binary Search

#include <stdio.h>

int main(void)

{

 int i, low, high, middle, n, key, a[10];

 printf("Enter number of elements");

 scanf("%d", &n);

 printf("Enter the elements”);

 for (i = 0; i < n; i++)

 scanf("%d", &a[i]);

 printf("Enter value to find");

 scanf("%d", &key);

 low = 0;

 high = n - 1;

 middle = (low + high)/2;

while(low <= high)

{

 if(a[middle] < key)

 low = middle + 1;

 else if(a[middle] == key)

 {

 printf(“Element is found”);

break;

}

else

 high = middle - 1;

 middle = (low + high)/2;

 }

if(low > high)

 printf(“Element is not found”);

return 0;

}

www.Jntufastupdates.com 7

DATA STRUCTURES

8
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

FIBONACCI SEARCH

✓ It was developed by Kiefer in 1953.

✓ In Fibonacci search we consider the indices as numbers from

fibonacci series.

✓ To apply fibonacci search algorithm the list that contains elements

should be in sorted order.

✓ The time complexity of fibonacci search algorithm is O(log n)

✓ It works on the principle divide - conquer strategy.

Example of Fibonacci Search

www.Jntufastupdates.com 8

DATA STRUCTURES

9
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Fibonacci Search

#include<stdio.h>

int main(void)

{

 int n, key, i, ar[20];

 void search(int ar[], int n, int key, int f, int a, int b);

 int fib(int n);

 clrscr();

 printf("\n Enter the number of elements in array");

 scanf("%d", &n);

 printf("\n Enter the elements");

 for(i=0;i<n;i++)

www.Jntufastupdates.com 9

DATA STRUCTURES

10
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 scanf("%d", &ar[i]);

 printf("Enter the element to be searched");

 scanf("%d", &key);

 search(ar, n, key, n, fib(n), fib(fib(n)));

 return 0;

}

int fib(int n)

{

 int a, b, f;

 if(n<1)

 return n;

 a=0;

 b=1;

 while(b<n)

 {

 f=a+b;

 a=b;

 b=f;

 }

 return a;

}

void search(int ar[], int n, int key, int f, int b, int a)

{

 if(f<1 || f>n)

 printf("the number is not present");

 else if(key<ar[f])

 {

 if(a<=0)

 printf("The element is not present in the list");

 else

 search(ar, n, key, f-a, a, b-a);

 }

www.Jntufastupdates.com 10

DATA STRUCTURES

11
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 else if(key>ar[f])

 {

 if(b<=1)

 printf("The element is not present in the list");

 else

 search(ar, n, key, f+a, b-a, a-b);

 }

 else

 printf("Element is present %d", f);

}

www.Jntufastupdates.com 11

DATA STRUCTURES

12
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SORTING

DEFINITION

Sorting is a technique to rearrange the list of elements either in

ascending or descending order, which can be numerical, alphabetical or

any user-defined order.

Types of Sorting

Internal Sorting

✓ If the data to be sorted remains in main memory and also the sorting

is carried out in main memory then it is called internal sorting.

✓ Internal sorting takes place in the main memory of a computer.

✓ The internal sorting methods are applied to small collection of data.

✓ The following are some internal sorting techniques:

✓ Insertion sort

✓ Merge Sort

✓ Quick Sort

✓ Heap Sort

External Sorting

✓ If the data resides in secondary memory and is brought into main

memory in blocks for sorting and then result is returned back to

secondary memory is called external sorting.

✓ External sorting is required when the data being sorted do not fit into

the main memory.

✓ The following are some external sorting techniques:

✓ Two-Way External Merge Sort

✓ K-way External Merge Sort

INSERTION SORT

 In this method, the elements are inserted at their appropriate place.

Hence the name insertion sort.

✓ This sorting is very simple to implement.

www.Jntufastupdates.com 12

DATA STRUCTURES

13
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ This method is very efficient when we want to sort small number of

elements.

✓ This method has excellent performance when almost the elements are

sorted.

✓ It is more efficient than bubble and selection sorts.

✓ This sorting is stable.

✓ This is an in-place sorting technique.

✓ The time complexity of insertion sort for best case is O(n), average

case and worst case is O(n2).

Algorithm for Insertion Sort

INSERTION-SORT (A, N)

Step 1: Repeat Steps 2 to 5 for I = 1 to N – 1

Step 2: SET TEMP = A[I]

Step 3: SET J = I - 1

Step 4: Repeat while TEMP <= A[J]

SET A[J + 1] = A[J]

SET J = J - 1

Step 5: SET A[J + 1] = TEMP

Step 6: EXIT

Example for insertion sort

Let us consider the array of elements to sort them using insertion sort

technique

30, 20, 10, 40, 50

The control moves to while loop as j>=0 and a[j] > temp is true, the

while is executed.

www.Jntufastupdates.com 13

DATA STRUCTURES

14
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since j >= 0 is false, control comes out of while loop

then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is true, the

while is executed.

www.Jntufastupdates.com 14

DATA STRUCTURES

15
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since j >= 0 is false, control comes out of while loop

Then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is false, the

while is not executed.

www.Jntufastupdates.com 15

DATA STRUCTURES

16
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Then the list becomes

The control moves to while loop as j>=0 and a[j] > temp is false, the

while is not executed.

Then the list becomes

Program to illustrate insertion sort technique.

#include<stdio.h>

void insert_sort(int [], int);

int main(void)

{

 int n, a[10], i;

 clrscr();

 printf(" Enter the size of the array ");

 scanf("%d", &n);

www.Jntufastupdates.com 16

DATA STRUCTURES

17
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf(" Enter the elements of the array ");

 for(i=0; i<n; i++)

 scanf("%d", &a[i]);

 insert_sort(a, n);

 return 0;

}

void insert_sort(int a[], int n)

{

 int i,j,temp;

 for(i=1; i<n; i++)

 {

 temp = a[i];

 j = i - 1;

 while(j >= 0 && a[j] > temp)

 {

 a[j+1] = a[j];

 j = j - 1;

 }

 a[j+1]=temp;

 }

 printf(" \n The sorted list of elements are ");

 for(i=0; i<n; i++)

 printf("%d\t", a[i]);

}

SELECTION SORT

✓ It is easy and simple to implement

✓ It is used for small list of elements

✓ It uses less memory

✓ It is efficient than bubble sort technique

✓ It is not efficient when used with large list of elements

www.Jntufastupdates.com 17

DATA STRUCTURES

18
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ It is not efficient than insertion sort technique when used with

large list

✓ The time complexity of selection sort is O(n2)

✓ Consider an array A with N elements. First find the smallest element

in the array and place it in the first position. Then, find the second

smallest element in the array and place it in the second position.

Repeat this procedure until the entire array is sorted.

✓ In Pass 1, find the position POS of the smallest element in the array

and then swap A[POS] and A[0]. Thus, A[0] is sorted.

✓ In Pass 2, find the position POS of the smallest element in sub-array

of N–1 elements. Swap A[POS] with A[1]. Now, A[0] and A[1] is

sorted.

✓ In Pass N–1, find the position POS of the smaller of the elements A[N–

2] and A[N–1]. Swap A[POS] and A[N–2] so that A[0], A[1], ..., A[N–1]

is sorted.

Algorithm for Selection Sort

Algorithm for Selection Sort

SELECTION SORT(A, N)

Step 1: Start

Step 2: Repeat Steps 3 and 4 for I = 1 to N

Step 3: Call SMALLEST(A, I, N, pos)

Step 4: Swap A[I] with A[pos]

Step 5: Stop

SMALLEST (A, I, N, pos)

Step 1: Start

Step 2: SET small = A[I]

Step 3: SET POS = I

Step 4: Repeat for J = I+1 to N

 If small> A[J]

 SET small = A[J]

www.Jntufastupdates.com 18

DATA STRUCTURES

19
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 SET pos = J

Step 4: Return pos

Step 5: Stop

Example for Selection Sort

www.Jntufastupdates.com 19

DATA STRUCTURES

20
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Selection Sort

include<stdio.h>

void selection_sort(int low, int high);

int a[25];

int main(void)

{

 int n, i= 0;

 printf("Enter the number of elements: ");

 scanf("%d", &n);

 printf("\nEnter the elements:\n");

 for(i=0; i < n; i++)

 scanf("%d", &a[i]);

 selection_sort(0, n-1);

 printf("\nThe elements after sorting are: ");

 for(i=0; i< n; i++)

 printf("%d\t ", a[i]);

 return 0;

}

void selection_sort(int low, int high)

{

 int i=0, j=0, temp=0, minindex;

 for(i=low; i <= high; i++)

 {

 minindex = i;

 for(j=i+1; j <= high; j++)

 {

 if(a[j] < a[minindex])

 minindex = j;

 }

 temp = a[i];

 a[i] = a[minindex];

 a[minindex] = temp;

www.Jntufastupdates.com 20

DATA STRUCTURES

21
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 }

}

BUBBLE SORT

✓ It is known as exchange sort

✓ It is also known as comparison sort

✓ It is easiest and simple sort technique but inefficient.

✓ It is not a stable sorting technique.

✓ The time complexity of bubble sort is O(n2) in all cases.

✓ Bubble sort uses the concept of passes.

✓ The phases in which the elements are moving to acquire their proper

positions is called passes.

✓ It works by comparing adjacent elements and bubbles the largest

element towards right at the end of the first pass.

✓ The largest element gets sorted and placed at the end of the sorted

list.

✓ This process is repeated for all pairs of elements until it moves the

largest element to the end of the list in that iteration.

✓ Bubble sort consists of (n-1) passes, where n is the number of

elements to be sorted.

✓ In 1st pass the largest element will be placed in the nth position.

✓ In 2nd pass the second largest element will be placed in the (n-1)th

position.

✓ In (n-1)th pass only the first two elements are compared.

Algorithm for Bubble Sort

BUBBLE_SORT(A, N)

Step 1: Repeat Step 2 For I = to N-1

Step 2: Repeat For J = to N - I

Step 3: IF A[J] > A[J + 1]

SWAP A[J] and A[J+1]

Step 4: EXIT

www.Jntufastupdates.com 21

DATA STRUCTURES

22
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Example for Bubble Sort

www.Jntufastupdates.com 22

DATA STRUCTURES

23
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

www.Jntufastupdates.com 23

DATA STRUCTURES

24
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Bubble Sort

#include<stdio.h>

void bubble_sort(int [], int);

int main(void)

{

 int n, a[10], i;

 clrscr();

 printf(" Enter the size of the array ");

 scanf("%d", &n);

 printf(" Enter the elements of the array ");

 for(i=0; i<n; i++)

 scanf("%d", &a[i]);

 bubble_sort(a,n);

 return 0;

}

void bubble_sort(int a[], int n)

{

 int i, j, m, temp;

 for(i=1; i<n-1; i++)

 {

 for(j=0; j<n; j++)

 {

 if(a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 }

 printf(" The sorted list of elements are ");

 for(i=0; i<n; i++)

www.Jntufastupdates.com 24

DATA STRUCTURES

25
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf("%d\t", a[i]);

}

QUICK SORT

✓ It is developed by C.A.R. Hoare.

✓ It is also known as partition exchange sort.

✓ This sorting algorithm uses divide and conquer strategy.

✓ In this method, the division is carried out dynamically.

✓ It contains three steps:

✓ Divide – split the array into two sub arrays so that each element in

the right sub array is greater than the middle element and each

element in the left sub array is less than the middle element. The

splitting is done based on the middle element called pivot. All the

elements less than pivot will be in the left sub array and all the

elements greater than pivot will be on right sub array.

✓ Conquer – recursively sort the two sub arrays.

✓ Combine – combine all the sorted elements in to a single list.

✓ Consider an array A[i] where i is ranging from 0 to n – 1 then the

division of elements is as follows:

A[0]……A[m – 1], A[m], A[m + 1] …….A[n]

✓ The partition algorithm is used to arrange the elements such that

all the elements are less than pivot will be on left sub array and

greater then pivot will be on right sub array.

✓ The time complexity of quick sort algorithm in worst case is O(n2),

best case and average case is O(n log n).

✓ It is faster than other sorting techniques whose time complexity is

O(n log n)

Algorithm for Quick Sort

QUICK_SORT (A, LOW, HIGH)

Step 1: IF (LOW < HIGH)

CALL PARTITION (A, LOW, HIGH, MID)

www.Jntufastupdates.com 25

DATA STRUCTURES

26
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CALL QUICKSORT(A, LOW, MID - 1)

CALL QUICKSORT(A, MID + 1, HIGH)

Step 2: EXIT

Algorithm for Partition

PARTITION (A, LOW, HHIGH, MID)

Step 1: SET PIVOT = A[LOW], I =LOW, J = HIGH

Step 2: Repeat Steps 3 to 5 while I <= LOW

Step 3: Repeat while A[LOW] <= A[PIVOT]

SET I = I + 1

Step 4: Repeat while A[j] >= PIVOT

 SET J = J – 1

Step 5: Repeat if I <= J

 SWAP A[I], A[J]

Step 6: SWAP A[LOW], A[J]

Step 7: Return J

Step 8: EXIT

Example for Quick Sort

Let us consider the array of elements to sort them using quick sort

technique

50, 30, 10, 90, 80, 20, 40, 70

We will increment i, if(a[i] <= pivot), we will continue incrementing i

until the condition is false.

www.Jntufastupdates.com 26

DATA STRUCTURES

27
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now a[i] > pivot, so stop incrementing i. As a[j] > pivot we will decrement j

until it becomes false

Now we cannot decrement j because a[j] < pivot. Hence we swap a[i] and a[j]

since i < j.

Now again a[i] < pivot so increment i

Now a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

www.Jntufastupdates.com 27

DATA STRUCTURES

28
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now a[j] < pivot so stop decrementing j. since i <j swap a[i] and a[j]

Now again a[i] < pivot so increment i

Now a[i] > pivot, so stop incrementing i. As a[j] > pivot we will decrement j

until it becomes false

.

As a[i] > pivot and a[j] < pivot and j crossed i we will swap a[low] and a[j]

We will now start left array to be sorted and then right sub array. The new

pivot for the left sub array is 20

www.Jntufastupdates.com 28

DATA STRUCTURES

29
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now since a[i] > pivot stop incrementing i and a[j] > pivot so decrement j

Now j cannot be decremented and i < j so swap a[i] and a[j]

Now again a[i] < pivot so increment i

Now a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

Since a[j] < pivot so j cannot be decremented and j crossed i so swap a[low]

and a[j]

There is one element in the left sub array hence all the elements in the right

sub array is to be sorted.

www.Jntufastupdates.com 29

DATA STRUCTURES

30
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Since a[i] > pivot and a[j] < pivot we stop incrementing I and decrementing j

and I < j we swap a[i] and a[j]

Since a[i] < pivot so increment i

Since a[i] > pivot so stop incrementing i and a[j] > pivot so decrement j

Since a[j] < pivot so j cannot be decremented and j crossed i so swap a[low]

and a[j]

Now the left contains 70 and right contains 90 we cannot further subdivide

the array. Hence if we look at the array all the elements are sorted.

www.Jntufastupdates.com 30

DATA STRUCTURES

31
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Quick Sort

#include <stdio.h>

#define size 100

int partition(int a[], int low, int high);

void quick_sort(int a[], int low, int high);

int main(void)

{

 int a[size], i, n;

 printf("\n Enter the number of elements in the array: ");

 scanf("%d", &n);

 printf("\n Enter the elements of the array: ");

 for(i=0;i<n;i++)

 {

 scanf("%d", &a[i]);

 }

 quick_sort(a, 0, n-1);

 printf("\n The sorted array is: \n");

 for(i=0;i<n;i++)

 printf(" %d\t", a[i]);

 return 0;

}

int partition(int a[], int low, int high)

{

 int left, right, temp, mid, flag;

 mid = left = low;

 right = high;

 flag = 0;

 while(flag != 1)

 {

 while((a[mid] <= a[right]) && (mid!=right))

 right--;

 if(mid==right)

www.Jntufastupdates.com 31

DATA STRUCTURES

32
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 flag =1;

 else if(a[mid]>a[right])

 {

 temp = a[mid];

 a[mid] = a[right];

 a[right] = temp;

 mid = right;

 }

 if(flag!=1)

 {

 while((a[mid] >= a[left]) && (mid!=left))

 left++;

 if(mid==left)

 flag =1;

 else if(a[mid] <a[left])

 {

 temp = a[mid];

 a[mid] = a[left];

 a[left] = temp;

 mid = left;

 }

 }

 }

 return mid;

}

void quick_sort(int a[], int low, int high)

{

 int mid;

 if(low<high)

 {

 mid = partition(a, low, high);

 quick_sort(a, low, mid -1);

www.Jntufastupdates.com 32

DATA STRUCTURES

33
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 quick_sort(a, mid+1, high);

 }

}

RADIX SORT

✓ It is a linear sorting algorithm.

✓ It is also known as bucket sort technique or binsort technique or card

sort technique since it uses buckets for sorting.

✓ It can be applied for integers as well as letters. For integers it used 10

buckets and for letters it uses 26 buckets.

✓ If the input is integers then we sort them from least significant digit to

most significant digit.

✓ The number passes used in radix sort depends on the number of

digits.

✓ The time complexity of radix sort in all cases is O(n log n)

✓ It takes more space compared to other sorting algorithms.

✓ It is used only for digits and letters

✓ It depends on the number of digits and letters.

Algorithm for Radix Sort

RadixSort (A, N)

Step 1: Find the largest number in A as LARGE

Step 2: SET NOP = Number of digits in LARGE

Step 3: SET PASS = 0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I = 0 and INITIALIZE buckets

Step 6: Repeat Steps 7 to 9 while I<N-1

Step 7: SET DIGIT = digit at PASSth place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT

Step 9: INCEREMENT bucket count for bucket numbered DIGIT

Step 10: Collect the numbers in the bucket

Step 11: EXIT

www.Jntufastupdates.com 33

DATA STRUCTURES

34
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Example for Radix Sort

Let us consider the array of elements to sort them using radix sort

technique

345, 654, 924, 123, 567, 472, 555, 808, 911

In the first pass, the numbers are sorted according to the digit at one’s

place

After the first pass the numbers are collected bucket by bucket. Thus

the new list for the second pass is

911, 472, 123, 654, 924, 345, 555, 567, 808

In the second pass the numbers are sorted according to the digit at

ten’s place.

www.Jntufastupdates.com 34

DATA STRUCTURES

35
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

After the second pass the numbers are collected bucket by bucket.

Thus the new list for the third pass is

808, 911, 123, 924, 345, 654, 555,567, 472

In the third pass the numbers are sorted according to the digit at

hundred place.

After the third pass the numbers are collected bucket by bucket. Thus

the new list formed is the final result. It is

123, 345, 472, 555, 567, 654, 808, 911, 924

Program for Radix Sort

#include<stdio.h>

int main(void)

{

 int a[100][100], i, n, r=0, c=0, b[100], temp;

 printf(” Enter the size of the array ”);

 scanf(“%d”, &n);

 for(r=0;r<100;r++)

 {

 for(c=0;c<100;c++)

 a[r][c] = 1000;

 }

www.Jntufastupdates.com 35

DATA STRUCTURES

36
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 printf(” Enter the array elements ”);

 for(i=0;i<n;i++)

 {

 scanf(“%d”, &b[i]);

 r = b[i] /100;

 c = b[i] % 100;

 a[r][c] = b[i];

 }

for(r=0;r<100;r++)

 {

 for(c=0;c<100;c++)

 {

 for(i=0;i<n;i++)

 {

 if(a[r][c] = =b[i])

 {

 printf(“\n\t”);

 printf(“%d”, a[r][c]);

 }

 }

 }

 }

 return 0;

}

MERGE SORT

✓ This sorting algorithm uses divide and conquer strategy.

✓ In this method, the division is carried out dynamically.

✓ It contains three steps:

✓ Divide – split the array into two sub arrays s1 and s2 with each n/2

elements. If A is an array containing zero or one element, then it is

already sorted. But if there are more elements in the array, divide A

www.Jntufastupdates.com 36

DATA STRUCTURES

37
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

into two sub-arrays, s1 and s2, each containing half of the elements of

A.

✓ Conquer – sort the two sub arrays s1 and s2.

✓ Combine – combine or merge s1 and s2 elements into a unique sorted

list.

✓ The time complexity of merge sort is O(n log n) in all cases.

Algorithm for Merge Sort

MERGE_SORT(A,LOW, HIGH)

Step 1: IF LOW < HIGH

SET MID = (LOW +HIGH)/2

CALL MERGE_SORT (A, LOW, MID)

CALL MERGE_SORT (A, MID + 1, HIGH)

COMBINE (A, LOW, MID, HIGH)

Step 2: EXIT

Algorithm for Combine

COMBINE (A, LOW, MID, HIGH)

Step 1: SET I = LOW, J = MID + 1, INDEX = LOW

Step 2: Repeat while (I <= MID) AND (J<=HIGH)

IF A[I] < A[J]

SET TEMP[INDEX] = A[I]

SET I = I + 1

SET INDEX = INDEX + 1

ELSE

SET TEMP[INDEX] = A[J]

SET J = J + 1

SET INDEX = INDEX + 1

Step 3: [Copy the remaining elements of right sub-array, if any]

IF I > MID

Repeat while J <= HIGH

www.Jntufastupdates.com 37

DATA STRUCTURES

38
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SET TEMP[INDEX] = A[J]

SET J = J + 1

SET INDEX = INDEX + 1

 [Copy the remaining elements of left sub-array, if any]

ELSE

IF A[I]<= MID

SET TEMP[INDEX] = A[I]

SET I = I + 1

SET INDEX = INDEX + 1

Step 4: EXIT

Example for Merge Sort

Let us consider the array of elements to sort them using Merge sort

technique

6, 1, 4, 3, 5, 7, 9, 2, 8, 0

We then first make the two sublists and combine the two sorted sublists as

a unique sorted list.

www.Jntufastupdates.com 38

DATA STRUCTURES

39
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now let us see the combine operations

1, 3, 4, 5, 6, 0, 2, 7, 8, 9

Now i remains there and j is incremented.

Now j remains there and i is incremented.

www.Jntufastupdates.com 39

DATA STRUCTURES

40
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now i remains there and j is incremented.

Now j remains there i is incremented

Now again i is incremented

www.Jntufastupdates.com 40

DATA STRUCTURES

41
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Now again i is incremented.

Now again i is incremented. But the left sub list is completed then j is

incremented until the right sub list is completed

www.Jntufastupdates.com 41

DATA STRUCTURES

42
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Finally we see the array is in sorted order.

Program for Merge Sort

#include <stdio.h>

#define size 100

void combine(int a[], int, int, int);

void merge_sort(int a[],int, int);

int main(void)

{

int a[size], i, n;

printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);

printf("\n Enter the elements of the array: ");

for(i=0;i<n;i++)

scanf("%d", &a[i]);

merge_sort(a, 0, n-1);

printf("\n The sorted array is: \n");

for(i=0;i<n;i++)

printf(" %d\t", a[i]);

return 0;

}

www.Jntufastupdates.com 42

DATA STRUCTURES

43
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

void combine(int a[], int low, int mid, int high)

{

int i=low, j=mid+1, index=low, temp[size], k;

while((i<=mid) && (j<=high))

{

if(a[i] < a[j])

{

temp[index] = a[i];

i++;

}

else

{

temp[index] = a[j];

j++;

}

index++;

}

if(i>mid)

{

while(j<=high)

{

temp[index] = a[j];

j++;

index++;

}

}

else

{

while(i<=mid)

{

temp[index] = a[i];

i++;

www.Jntufastupdates.com 43

DATA STRUCTURES

44
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

index++;

}

}

for(k=low;k<index;k++)

a[k] = temp[k];

}

void merge_sort(int a[], int low, int high)

{

int mid;

if(low<high)

{

mid = (low+high)/2;

merge_sort(a, low, mid);

merge_sort(a, mid+1, high);

combine(a, low, mid, high);

}

}

HEAP SORT

✓ Heap is a complete binary tree and also a Max(Min) tree.

✓ A Max(Min) tree is a tree whose root value is larger(smaller) than its

children.

✓ This sorting technique has been developed by J.W.J. Williams.

✓ It is working under two stages.

 Heap construction

 Deletion of a Maximum element key

✓ The heap is first constructed with the given numbers. The maximum

key value is deleted for n -1 times to the remaining heap. Hence we

will get the elements in decreasing order. The elements are deleted one

by one and stored in the array from last to first. Finally we get the

elements in ascending order.

✓ The important points about heap sort technique are:

www.Jntufastupdates.com 44

DATA STRUCTURES

45
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

✓ The time complexity of heap sort is O(n log n)

✓ This is a in-place sorting algorithm.

✓ For random input it works slower than quick sort

✓ Heap sort is not a stable sorting method

✓ The space complexity of heap sort is O(1).

Algorithm Heap Sort

✓ Build a max heap from the input data.

✓ At this point, the largest item is stored at the root of the heap. Replace

it with the last item of the heap followed by reducing the size of heap

by 1. Finally, heapify the root of tree.

✓ Repeat above steps while size of heap is greater than 1

Procedure for Working of Heap Sort

Initially on receiving an unsorted list,

✓ First step in heap sort is to build Max-Heap.

✓ Repeat Second, Third and Fourth steps, until we have the complete

sorted list in our array.

✓ Second step - Once heap is built, the first element of the Heap is

largest, so we exchange first and last element of a heap.

✓ Third step - We delete and put last element(largest) of the heap in our

array.

✓ Fourth step - Then we again make heap using the remaining

elements, to again get the largest element of the heap and put it into

the array. We keep on doing the same repeatedly until we have the

complete sorted list in our array.

Example for Heap Sort

Let us consider the array of elements to sort them using heap sort

technique

4, 1, 3, 2, 16, 9, 10, 14, 8, 7

www.Jntufastupdates.com 45

DATA STRUCTURES

46
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Stage -1 construction of heap

www.Jntufastupdates.com 46

DATA STRUCTURES

47
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Stage – 2 deletion of maximum key element

www.Jntufastupdates.com 47

DATA STRUCTURES

48
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program for Heap Sort

#include<stdio.h>

void heap_sort(int[], int);

void makeheap(int[], int);

int main(void)

{

 int a[10], n, i;

 printf(" Enter the size of the array ");

 scanf("%d", &n);

 printf(" Enter the array elements ");

www.Jntufastupdates.com 48

DATA STRUCTURES

49
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 for(i=0;i<n;i++)

 scanf("%d", &a[i]);

 makeheap(a, n);

 heap_sort(a, n);

 printf(" The elements after sorting are ");

 for(i=0;i<n;i++)

 printf("\t%d", a[i]);

 return 0;

}

void makeheap(int a[], int n)

{

 int i, val, j, parent;

 for(i=1;i<n;i++)

 {

 val = a[i];

 j = i;

 parent = (j - 1) / 2;

 while(j>0 && parent < val)

 {

 a[j] = a[parent];

 j = parent;

 parent = (j - 1) / 2;

 }

 a[j] = val;

 }

}

void heap_sort(int a[], int n)

{

 int i, j, k, temp;

 for(i=n-1;i>0;i--)

 {

www.Jntufastupdates.com 49

DATA STRUCTURES

50
Dr. Ratna Raju Mukiri M.Tech(CSE)., S.E.T., Ph.D.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 temp = a[i];

 a[i] = a[0];

 k = 0;

 if(i == 1)

 j = -1;

 else

 j = 1;

 if(i > 2 && a[2] > a[1])

 j = 2;

 while(j >=0 && temp < a[j])

 {

 a[k] = a[j];

 k = j;

 j = 2 * k +1;

 if(j+1 <= i-1 && a[j] < a[j+1])

 j++;

 if(j > i-1)

 j = -1;

 }

 a[k] = temp;

 }

}

www.Jntufastupdates.com 50

 ||''|'''|''|'|''''||

III B. Tech II Semester Regular Examinations, April/May - 2019

DATA STRUCTURES

 (Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) Define data structure. [2M] 

 b) What is a double-ended-queue? [2M] 

 c) What is a self referential structure? Give an example. [2M] 

 d) Discuss the role of mid element in binary search. [3M] 

 e) Construct the graph whose adjacency matrix is given below and also analyze its 

properties. 

 

[3M] 

 f) Present the time complexity of merge sort in different cases. [2M] 

 

PART -B 

2. a) Explain about different notations for time complexity and space complexity of 

algorithms. 

[7M] 

 b) Write a C program to traverse an array in reverse order. [7M] 

3. a) Discuss the role of stacks in executing recursive procedures. [7M] 

 b) What is a priority queue? Explain different methods of implementing them. [7M] 

4. a) Write a C function to implement insert operation in a circular linked list. [7M] 

 b) Explain with an example, how linked lists can be used for sparse matrix 

representation and computations.  

[7M] 

5. a) What is a threaded binary tree? Discuss its advantages and limitations. [7M] 

 b) Insert the sequence of integers 13, 3, 4, 12, 14, 10, 5, 1, 8, 2, 7, 9, 11, 6 and 18 in an 

initially empty Binary Search Tree. Then delete 5 and 1. (Present the operations one 

after the other in the same order). 

 

1 of 2 

 

 

 

 

 

[7M] 

SET - 1 R16 Code No: R1632024 



                      ||''|'''|''|'|''''||

  

 

 

 

 

6. a) Compute shortest paths between every pair of vertices in the graph below using 

appropriate algorithm. 

 
 

[7M] 

 b) Write notes on basic operations performed on graphs and challenges involved. 

 

[7M] 

7. a) Write and explain Fibonacci Search algorithm. [7M] 

 b) Sort the below list of elements in ascending order using heap sort: 

6, 8, 7, 9, 1, 4, 3, 2, 5, 0. 

[7M] 

 

 

***** 

 

 

 

 

 

 

 

 

2 of 2 

  

SET - 1 R16 Code No: R1632024 



                      ||''|'''|''|'|''''||

  

 

 

III B. Tech II Semester Regular Examinations, April/May - 2019 

DATA STRUCTURES  

 (Electrical and Electronics Engineering) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

PART –A

1. a) Give the syntax for declaring a 3-dimensional array. [2M]

 b) Write brief notes on polish notation. [3M]

 c) What is a spare matrix? Give an example. [2M]

 d) What are balanced binary trees? Why it is needed to balance binary trees? [2M]

 e) Define the terms: simple graph, directed graph and connected graph. [3M]

 f) What is stable sorting? Give an example. [2M]

PART -B

2. a) Write about the classification of data structures. [7M]

 b) Explain about different operations in String ADT.

[7M]

3. a) Write an algorithm/program that gives solution for Towers of Hanoi problem with n

disks.

[7M]

 b) With array representation, explain the basic queue operations.

[7M]

4. a) Write a C program to traverse a given single linked list in reverse order. [7M]

 b) Explain with an example, how linked lists can be used for polynomial

representation.

[7M]

5. a) Discuss about different representations of binary trees. Give an example for each. [7M]

 b) Insert the sequence of integers 10, 20, 30, 40, 50, 60, 70, 80 and 90 in an initially

empty B-Tree. Then delete 40 and 70. (Present the operations one after the other.)

[7M]

6. a) Differentiate between BFS and DFS with algorithms and examples. [7M]

 b) Compute minimum cost spanning tree for the graph below using Prim’s algorithm:

[7M]

7. a) Write and explain Binary Search algorithm. Also mention its time complexity. [7M]

 b) Sort the below list of elements in ascending order using quick sort:

29, 23, 17, 57, 34, 89, 65, 27.

[7M]

SET - 2 R16 Code No: R1632024

 ||''|'''|''|'|''''||

III B. Tech II Semester Regular Examinations, April/May - 2019

DATA STRUCTURES

 (Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

PART –A  

1. a) List different operations that can be performed on an array. [2M] 

 b) What is a queue data structure? [2M] 

 c) Write C structure to declare node of a double-linked list. [2M] 

 d) Define the terms: root, leaf and siblings with respect to trees. [3M] 

 e) List some real world applications of directed, undirected and hybrid graphs. [3M] 

 f) Present the time complexity of quick sort in different cases. [2M] 

PART -B 

2. a) With a neat sketch, explain the model of ADT. [7M] 

 b) Explain how linear arrays are stored and traversed. 

 

[7M] 

3. a) Explain how postfix expressions are evaluated using stacks. Give an example. [7M] 

 b) Differentiate between regular queues and circular queues with insert and delete 

operations. 

 

[7M] 

4. a) Discuss the advantages and limitations of linked lists. [7M] 

 b) Write a C program to implement queues using linked lists. 

 

[7M] 

5. a) Write recursive functions for inorder, preorder and postorder traversal in a binary 

tree. 

[7M] 

 b) Construct a max heap from the sequence of integers 13, 3, 4, 12, 14, 10, 5, 1, 8, 2, 7, 

9, 11, 6 and 18. Then delete 2 minimum elements. (Present the operations one after 

the other in the same order.) 

 

[7M] 

6. a) What is transitive closure? Compute transitive closure of the graph given below, 

using Warshall’s algorithm: 

 

[7M] 

 b) Write and explain Kruskal’s algorithm for finding minimum cost spanning tree of a 

graph. 

 

[7M] 

7. a) Give a comparison between several searching techniques. [7M] 

 b) Write and explain iterative merge sort algorithm, with an example. [7M] 

 

***** 

  

SET - 3 R16 Code No: R1632024 



                      ||''|'''|''|'|''''||

  

 

III B. Tech II Semester Regular Examinations, April/May - 2019 

DATA STRUCTURES  

 (Electrical and Electronics Engineering) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

PART –A

1. a) What is the key difference between strings and regular arrays? [2M]

 b) What is a stack data structure? [2M]

 c) Define a header linked list. [2M]

 d) What is a complete binary tree? [3M]

 e) What is a biconnected component? [3M]

 f) What are the limitations of binary search? [2M]

PART -B
2. a) List and explain different operations performed on data structures. [7M]

 b) Write a C program to add two matrices, using multidimensional arrays. [7M]

3. a) Explain how an infix expression can be converted into postfix expression, using

stacks. Give an example.

[7M]

 b) Write and explain the queue ADT. [7M]

4. a) Differentiate between arrays and linked lists. [7M]

 b) Write a C program to implement stacks using linked lists, doubly and circular

linked lists.

[7M]

5. a) Explain the procedure for deletion of an element from a binary search tree. [7M]

 b) Present the preorder, inorder and postorder traversal of the below binary tree:

[7M]

6. a) Explain about various graph representations. Discuss the pros and cons of each. [7M]

 b) Using Dijkstra’s algorithm, find shortest paths from vertex 0 to remaining vertices

in the graph given below.

[7M]

7. a) What is hashing? Explain its role, advantages and disadvantages w.r.to searching. [7M]

 b) Sort the below list of elements in ascending order using shell sort:

3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2

[7M]

SET - 4 R16 Code No: R1632024

	DATA STRUCTURES THROUGH C
	ACADEMIC YEAR 2021-22
	I B.Tech.–II SEMESTER(R20)
	V.Divya,Assistant Professor
	Faculty Member Head of the Department Principal
	Stack:
	Queue:
	Difference between Stack and Queue Data Structures
	Array implementation of Stack
	Adding an element onto the stack (push operation)
	Deletion of an element from a stack (Pop operation)
	Visiting each element of the stack (Peek operation)

	Linked list implementation of stack
	Adding a node to the stack (Push operation)
	Deleting a node from the stack (POP operation)

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm
	Algorithm to delete an element from the queue
	Algorithm (1)
	Drawback of array implementation

	Linked List implementation of Queue
	Operation on Linked Queue
	Insert operation
	Algorithm
	Deletion
	Algorithm (1)
	Complexity
	Insertion in Circular queue
	Algorithm to insert an element in circular queue
	Algorithm to delete an element from a circular queue
	Algorithm (2)

	Priority Queue

